On partially conservative sentences and interpretability
HTML articles powered by AMS MathViewer
- by Per Lindström
- Proc. Amer. Math. Soc. 91 (1984), 436-443
- DOI: https://doi.org/10.1090/S0002-9939-1984-0744645-9
- PDF | Request permission
Abstract:
A sentence $\varphi$ is $\Gamma$-conservative over $T$ if $T + \varphi \vdash \psi$ implies $T \vdash \psi$ for every $\psi \in \Gamma$. In §1 this concept for $\Gamma = \sum _{n + 1}^0$ and $\prod _{n + 1}^0$ is investigated. In §2 results from §1 are applied to interpretability in theories containing arithmetic.References
- S. Feferman, Arithmetization of metamathematics in a general setting, Fund. Math. 49 (1960/61), 35–92. MR 147397, DOI 10.4064/fm-49-1-35-92
- D. Guaspari, Partially conservative extensions of arithmetic, Trans. Amer. Math. Soc. 254 (1979), 47–68. MR 539907, DOI 10.1090/S0002-9947-1979-0539907-7
- Petr Hájek, On interpretability in set theories, Comment. Math. Univ. Carolinae 12 (1971), 73–79. MR 311470
- Petr Hájek, On partially conservative extensions of arithmetic, Logic Colloquium ’78 (Mons, 1978) Studies in Logic and the Foundations of Mathematics, vol. 97, North-Holland, Amsterdam-New York, 1979, pp. 225–234. MR 567671
- Marie Hájková and Petr Hájek, On interpretability in theories containing arithmetic, Fund. Math. 76 (1972), no. 2, 131–137. MR 307897, DOI 10.4064/fm-76-2-131-137
- D. Jensen and A. Ehrenfeucht, Some problem in elementary arithmetics, Fund. Math. 92 (1976), no. 3, 223–245. MR 419212, DOI 10.4064/fm-92-3-223-245
- G. Kreisel, On weak completeness of intuitionistic predicate logic, J. Symbolic Logic 27 (1962), 139–158. MR 161796, DOI 10.2307/2964110
- G. Kreisel and A. Lévy, Reflection principles and their use for establishing the complexity of axiomatic systems, Z. Math. Logik Grundlagen Math. 14 (1968), 97–142. MR 228333, DOI 10.1002/malq.19680140702
- Per Lindström, Some results on interpretability, Proceedings from 5th Scandinavian Logic Symposium (Aalborg, 1979) Aalborg Univ. Press, Aalborg, 1979, pp. 329–361. MR 606608
- Per Lindström, On certain lattices of degrees of interpretability, Notre Dame J. Formal Logic 25 (1984), no. 2, 127–140. MR 733599, DOI 10.1305/ndjfl/1093870573 —, On faithful interpretability (to appear).
- Steven Orey, Relative interpretations, Z. Math. Logik Grundlagen Math. 7 (1961), 146–153. MR 146082, DOI 10.1002/malq.19610070710 J. Quinsey, Sets of ${\sum _k}$-conservative sentences are $\prod _2^0$ complete, J. Symbolic Logic 46 (1981), 442 (abstract).
- C. Smoryński, Calculating self-referential statements: Guaspari sentences of the first kind, J. Symbolic Logic 46 (1981), no. 2, 329–344. MR 613286, DOI 10.2307/2273625
- C. Smoryński, Fifty years of self-reference in arithmetic, Notre Dame J. Formal Logic 22 (1981), no. 4, 357–374. MR 622365, DOI 10.1305/ndjfl/1093883515 R. Solovay, On interpretability in set theories (to appear).
- Vítězslav Švejdar, Degrees of interpretability, Comment. Math. Univ. Carolin. 19 (1978), no. 4, 789–813. MR 518190
Bibliographic Information
- © Copyright 1984 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 91 (1984), 436-443
- MSC: Primary 03F25; Secondary 03F30
- DOI: https://doi.org/10.1090/S0002-9939-1984-0744645-9
- MathSciNet review: 744645