Mappings between Euclidean spaces that are one-to-one over the image of a dense subset
HTML articles powered by AMS MathViewer
- by Mladen Bestvina and John J. Walsh
- Proc. Amer. Math. Soc. 91 (1984), 449-455
- DOI: https://doi.org/10.1090/S0002-9939-1984-0744647-2
- PDF | Request permission
Abstract:
Examples are constructed that include, for $n > m \geqslant 2$, proper surjective maps $f:{{\mathbf {R}}^n} \to {{\mathbf {R}}^m}$ that are one to one over the image of a dense subset $D \subset {{\mathbf {R}}^n}$; i.e., the restriction of $f$ yields a homeomorphism from ${f^{ - 1}}f(D)$ onto $f(D)$. A routine Baire Category argument establishes that, for any $\sigma$-compact subset $F \subset {{\mathbf {R}}^n}$ which $f$ maps onto ${{\mathbf {R}}^m}$, ${\operatorname {Int}}(F) \ne \theta$ and, hence, $\dim F = n$.References
- Mladen Bestvina, Essential dimension lowering mappings having dense deficiency set, Trans. Amer. Math. Soc. 287 (1985), no. 2, 787–798. MR 768741, DOI 10.1090/S0002-9947-1985-0768741-0
- P. T. Church and J. G. Timourian, Deficient points of maps on manifolds, Michigan Math. J. 27 (1980), no. 3, 321–338. MR 584697, DOI 10.1307/mmj/1029002406
- Witold Hurewicz and Henry Wallman, Dimension Theory, Princeton Mathematical Series, vol. 4, Princeton University Press, Princeton, N. J., 1941. MR 0006493
- Matti Honkapohja, Degree and point-inverses of mappings on spheres, Ann. Acad. Sci. Fenn. Ser. A I 447 (1969), 5. MR 0248767
- Matti Honkapohja, Degree and point-inverses of mappings on generalized manifolds, Ann. Acad. Sci. Fenn. Ser. A I Math. Dissertationes 4 (1975), 19. MR 383393
- Heinz Hopf, Zur Topologie der Abbildungen von Mannigfaltigkeiten, Math. Ann. 102 (1930), no. 1, 562–623 (German). MR 1512596, DOI 10.1007/BF01782365 K. Kuratowski, Sur le problème des courbes gauches in topologie, Fund. Math. 15 (1930), 271-283.
- Edwin H. Spanier, Algebraic topology, McGraw-Hill Book Co., New York-Toronto-London, 1966. MR 0210112
- John J. Walsh, Mappings with dense deficiency set, Michigan Math. J. 28 (1981), no. 1, 117–127. MR 600419
- Gordon Thomas Whyburn, Analytic Topology, American Mathematical Society Colloquium Publications, Vol. 28, American Mathematical Society, New York, 1942. MR 0007095, DOI 10.1090/coll/028
Bibliographic Information
- © Copyright 1984 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 91 (1984), 449-455
- MSC: Primary 57N15; Secondary 54B15, 54C05, 54C10
- DOI: https://doi.org/10.1090/S0002-9939-1984-0744647-2
- MathSciNet review: 744647