On the dimension of limits of inverse systems
HTML articles powered by AMS MathViewer
- by Yukinobu Yajima
- Proc. Amer. Math. Soc. 91 (1984), 461-466
- DOI: https://doi.org/10.1090/S0002-9939-1984-0744649-6
- PDF | Request permission
Abstract:
We say that the limit of an inverse system $X = \underleftarrow {\lim }\left \{ {{X_\lambda },\pi _\mu ^\lambda ,\Lambda } \right \}$ is cylindrical if each finite cozero cover of $X$ has a $\sigma$-locally finite refinement consisting of sets of the form $\pi _\lambda ^{ - 1}(U)$, where $U$ is a cozero-set in ${X_\lambda }$ and ${\pi _\lambda }:X \to {X_\lambda }$ is the projection. We prove that if $X$ is cylindrical, then $\dim X = \sup \left \{ {\dim {X_\lambda }:\lambda \in \Lambda } \right \}$.References
- M. G. Charalambous, The dimension of inverse limits, Proc. Amer. Math. Soc. 58 (1976), 289–295. MR 410696, DOI 10.1090/S0002-9939-1976-0410696-2
- R. Engelking, On functions defined on Cartesian products, Fund. Math. 59 (1966), 221–231. MR 203697, DOI 10.4064/fm-59-2-221-231
- Yûkiti Katuta, On the covering dimension of inverse limits, Proc. Amer. Math. Soc. 84 (1982), no. 4, 588–592. MR 643755, DOI 10.1090/S0002-9939-1982-0643755-2
- B. S. Klebanov, Subspaces of products of metric spaces, Dokl. Akad. Nauk SSSR 250 (1980), no. 6, 1302–1306 (Russian). MR 564331
- Kiiti Morita, On the dimension of the product of Tychonoff spaces, General Topology and Appl. 3 (1973), 125–133. MR 321041
- Keiô Nagami, $\Sigma$-spaces, Fund. Math. 65 (1969), 169–192. MR 257963, DOI 10.4064/fm-65-2-169-192
- Keiô Nagami, Dimension of nonnormal spaces, Fund. Math. 109 (1980), no. 2, 113–121. MR 597059, DOI 10.4064/fm-109-2-113-121 B. A. Pasynkov, On the dimension of products of normal spaces, Soviet Math. Dokl. 14 (1973), 530-533. —, On the dimension of topological products and limits of inverse sequences, Soviet Math. Dokl. 22 (1980), 596-601.
- B. A. Pasynkov, Factorization theorems in dimension theory, Uspekhi Mat. Nauk 36 (1981), no. 3(219), 147–175, 256 (Russian). MR 622723
- Elżbieta Pol, On the dimension of the product of metrizable spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 26 (1978), no. 6, 525–534 (English, with Russian summary). MR 511956
- R. Pol and E. Puzio-Pol, Remarks on Cartesian products, Fund. Math. 93 (1976), no. 1, 57–69. MR 428251, DOI 10.4064/fm-93-1-57-69
- Jun Terasawa, On the zero-dimensionality of some non-normal product spaces, Sci. Rep. Tokyo Kyoiku Daigaku Sect. A 11 (1972), 167–174. MR 310850
- M. G. Tkačenko, The notion of $\textrm {o}$-tightness and $C$-embedded subspaces of products, Topology Appl. 15 (1983), no. 1, 93–98. MR 676970, DOI 10.1016/0166-8641(83)90051-2
- Yukinobu Yajima, On $\Sigma$-products of $\Sigma$-spaces, Fund. Math. 123 (1984), no. 1, 29–37. MR 755616, DOI 10.4064/fm-123-1-29-37
Bibliographic Information
- © Copyright 1984 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 91 (1984), 461-466
- MSC: Primary 54F45; Secondary 54B10
- DOI: https://doi.org/10.1090/S0002-9939-1984-0744649-6
- MathSciNet review: 744649