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ON THE RATIONALITY OF THE VARIETY

OF SMOOTH RATIONAL SPACE CURVES

WITH FIXED DEGREE AND NORMAL BUNDLE

EDOARDO BALLICO1

Abstract. Let S„ a be the variety of smooth, rational curves of degree n in P, whose

normal bundle has a factor of degree In - 1 + a and a factor of degree In - 1 - a.

In this paper we prove that S„ „ is rational if n - a is even and a > 0.

We work over C. Let Sn a c Hilb P3 be the set of smooth, rational curves in P, of

degree n whose normal bundle splits with a summand of degree In - I - a and

another of degree In - 1 + a. Eisenbud and Van de Ven [1,2] proved that for

0 ^ a < n - 4, §„ a is not empty, irreducible and of dimension An - la + 1 (if

a > 0). Let Sna be the set of embeddings/: Px -* P3 with/(P,) e S„a. They proved

in [2] that Sn a is irreducible, rational and, if a > 0, of dimension An - 2a + 4.

PGL(2) = Aut(P,) acts naturally on S„ a without fixed points. S„ a is the quotient of

S„ a by this action and the natural map S„a -» S„a makes S„a a principal locally

isotrivial bundle over S„ a with structural group PGL(2) (see Serre [6] for this

notion).

In the introduction to [2] Eisenbud and Van de Ven raised the question of the

rationality of S„ a. Here we prove the following

Theorem. If a > 0 and n - a is even, then Sn a is rational.

The proof of this theorem uses only the construction in [2, §5], elementary

properties of conic bundles (or Pj-bundles) with smooth fibers and smooth base, and

the definition of stably rational varieties due to Kollar and Schreyer [4]. An

irreducible variety V is said to be stably rational of level k if V X PA is rational. For

the elementary properties of conic bundles we need to see Serre [6]; we also found

useful [3,5].

We write Sn for the variety of smooth, rational curves of degree n in P3 and Sn for

the set of embeddings of degree n of P, into P3. S„ is rational and S„ -» S„ is a

principal locally isotrivial bundle with structure group PGL(2). Since Sn (resp. S„ a)

is rational, if the natural map p: S„ -* §„ (resp. S„ a -» S„ a) has a rational section,
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then Sn (resp. §„ u) is stably rational of level 3. The rationality of S„ a was proved in

[2, p. 97].

Lemma 1. Assume n odd. Then for every x e Sn> there exists a rational section of p

defined at x.

Proof. Since S„ is contained in Hilb P3, we have a universal curve C -» Sn with an

inclusion /: C -* S„ X P3 over S„. C is a conic bundle with a smooth base. Since n is

odd, this conic bundle is locally trivial in the Zariski topology [2]. Thus there is a

neighborhood U of x and an {/-isomorphism h: U X Px ~* C. The map / ° h gives the

section of p defined on U.   D

We write Rn for the set of maps of degree n of P! into P3. Again PGL(2) acts on

P»„ and we write Rn for its quotient. Since we are interested only at birational

geometry, there is no problem here; we can substitute Rn with S„ if we want. In [2] a

key point was the map G: S„ a -* Ä„_a_j (a > 0) constructed in the following way.

Fix /e Sna.

Nf:= f*{Nm)/P}) s &Pi(2n - 1 - a) <& &Pi(2n - 1 + a)

is a quotient of/*(PP3). Thus the subline bundle 6P (2n - 1 + a) defines a rank-2

subbundle Vf of/*(PP3). The map G(f): Px -» P3 is constructed by taking for

G(f)(t) the plane in P3 which is determined by V,, c PP3/(/). Note that the map G

descends to a map G: Sna -* P„_u_i such that, for 0 < a < n - 4 we have the

following commutative diagram:

G
■Vu ""* ft-n-a-l

il is 0 < a < n - 4.

G

■^/i.ü        ~* °n-a-l

Eisenbud and Van de Ven [2, p. 97] proved that G is birationally the projection of a

product with fiber rational of dimension 2a + 5. If n — a is even, by Lemma 1 g has

a rational section. Thus ÄB_a_j is stably rational of level 3, G is birationally a

product with fiber P2a + 5 and Sna is rational. This concludes the proof of Theorem 1.

If n - a is odd, a > 0, we do not know very much. A trick easily gives the

following

Proposition 1. Assume a > 0. Then S„a is covered by rational subvarieties of

codimension 2.

Proof. Fix a point OeP, and a point P in P3. Let An be the set of embeddings/

of Px into P3 with/(G) = P and degi/XP^) = n. An is rational. The affine group of

projective transformations of Px fixing O acts on An and let Än c HilbP, be the

quotient. An is the subset of Sn formed by curves through P. The map An -» /4„ has

always a rational section. This follows from the speciality of the affine group [3,

Lemme 2.3]. Alternatively the restriction to Än of the conic bundle of Lemma 1

comes from a vector bundle since the point P defines a line bundle on p\An) with

degree one on every fiber.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



512 EDUARDO BALLICO

Thus Àn_a_x is stably rational of level 2 and G\ G~l(Än_a_x) has a rational

section. Thus G_1(^í„-ü-i) is a rational subvariety of codimension 2 of S„ a.   D

For a = 0 the same method gives only that S„ is covered by codimension 2

subvarieties which are stably rational of level 2.
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