ON THE RATIONALITY OF THE VARIETY OF SMOOTH RATIONAL SPACE CURVES WITH FIXED DEGREE AND NORMAL BUNDLE

EDOARDO BALLICO

Abstract. Let $\mathcal{S}_{n,a}$ be the variety of smooth, rational curves of degree n in \mathbb{P}_3 whose normal bundle has a factor of degree $2n - 1 + a$ and a factor of degree $2n - 1 - a$. In this paper we prove that $\mathcal{S}_{n,a}$ is rational if $n - a$ is even and $a > 0$.

We work over \mathbb{C}. Let $\mathcal{S}_{n,a} \subset \text{Hilb} \mathbb{P}_3$ be the set of smooth, rational curves in \mathbb{P}_3 of degree n whose normal bundle splits with a summand of degree $2n - 1 - a$ and another of degree $2n - 1 + a$. Eisenbud and Van de Ven [1, 2] proved that for $0 \leq a \leq n - 4$, $\mathcal{S}_{n,a}$ is not empty, irreducible and of dimension $4n - 2a + 1$ (if $a > 0$). Let $\mathcal{S}_{n,a}$ be the set of embeddings $f: \mathbb{P}_1 \to \mathbb{P}_3$ with $f(\mathbb{P}_1) \in \mathcal{S}_{n,a}$. They proved in [2] that $\mathcal{S}_{n,a}$ is irreducible, rational and, if $a > 0$, of dimension $4n - 2a + 4$. $\text{PGL}(2) = \text{Aut}(\mathbb{P}_1)$ acts naturally on $\mathcal{S}_{n,a}$ without fixed points. $\mathcal{S}_{n,a}$ is the quotient of $\tilde{\mathcal{S}}_{n,a}$ by this action and the natural map $\mathcal{S}_{n,a} \to \tilde{\mathcal{S}}_{n,a}$ makes $\mathcal{S}_{n,a}$ a principal locally isotrivial bundle over $\tilde{\mathcal{S}}_{n,a}$ with structural group $\text{PGL}(2)$ (see Serre [6] for this notion).

In the introduction to [2] Eisenbud and Van de Ven raised the question of the rationality of $\tilde{\mathcal{S}}_{n,a}$. Here we prove the following

Theorem. If $a > 0$ and $n - a$ is even, then $\tilde{\mathcal{S}}_{n,a}$ is rational.

The proof of this theorem uses only the construction in [2, §5], elementary properties of conic bundles (or \mathbb{P}_1-bundles) with smooth fibers and smooth base, and the definition of stably rational varieties due to Kollar and Schreyer [4]. An irreducible variety V is said to be stably rational of level k if $V \times \mathbb{P}_k$ is rational. For the elementary properties of conic bundles we need to see Serre [6]; we also found useful [3, 5].

We write $\tilde{\mathcal{S}}_n$ for the variety of smooth, rational curves of degree n in \mathbb{P}_3 and \mathcal{S}_n for the set of embeddings of degree n of \mathbb{P}_1 into \mathbb{P}_3. \mathcal{S}_n is rational and $\mathcal{S}_n \to \tilde{\mathcal{S}}_n$ is a principal locally isotrivial bundle with structure group $\text{PGL}(2)$. Since \mathcal{S}_n (resp. $\mathcal{S}_{n,a}$) is rational, if the natural map $p: \mathcal{S}_n \to \tilde{\mathcal{S}}_n$ (resp. $\mathcal{S}_{n,a} \to \tilde{\mathcal{S}}_{n,a}$) has a rational section,
then \(\hat{S}_n \) (resp. \(\hat{S}_{n,a} \)) is stably rational of level 3. The rationality of \(S_{n,a} \) was proved in [2, p. 97].

Lemma 1. Assume \(n \) odd. Then for every \(x \in \hat{S}_n \), there exists a rational section of \(p \) defined at \(x \).

Proof. Since \(\hat{S}_n \) is contained in \(\text{Hilb } \mathbb{P}_3 \), we have a universal curve \(C \to \hat{S}_n \) with an inclusion \(i: C \to \hat{S}_n \times \mathbb{P}_3 \) over \(\hat{S}_n \). C is a conic bundle with a smooth base. Since \(n \) is odd, this conic bundle is locally trivial in the Zariski topology [2]. Thus there is a neighborhood \(U \) of \(x \) and an \(U \)-isomorphism \(h: U \times \mathbb{P}_1 \to C \). The map \(i \circ h \) gives the section of \(p \) defined on \(U \). \(\square \)

We write \(R_{n} \) for the set of maps of degree \(n \) of \(\mathbb{P}_1 \) into \(\mathbb{P}_3 \). Again \(\text{PGL}(2) \) acts on \(R_{n} \) and we write \(\hat{R}_n \) for its quotient. Since we are interested only at birational geometry, there is no problem here; we can substitute \(R_{n} \) with \(\hat{S}_n \) if we want. In [2] a key point was the map \(G: S_{n,a} \to \mathbb{P}_2^{a} \) constructed in the following way. Fix \(f \in S_{n,a} \).

\[
N_f := f^*(\mathcal{O}_{\mathbb{P}_3}(2n - 1 + a) \otimes \mathcal{O}_{\mathbb{P}_3}(2n - 1 - a))
\]

is a quotient of \(f^*(\mathcal{O}_{\mathbb{P}_3}) \). Thus the subline bundle \(\mathcal{O}_{\mathbb{P}_1}(2n - 1 + a) \) defines a rank-2 subbundle \(V_f \) of \(f^*(\mathcal{O}_{\mathbb{P}_3}) \). The map \(G(f): \mathbb{P}_1 \to \mathbb{P}_3 \) is constructed by taking for \(G(f)(t) \) the plane in \(\mathbb{P}_3 \) which is determined by \(V_f \subset \mathcal{O}_{\mathbb{P}_3}(f(t)) \). Note that the map \(G \) descends to a map \(\hat{G}: \hat{S}_{n,a} \to \hat{R}_{n-a-1} \) such that, for \(0 < a \leq n - 4 \) we have the following commutative diagram:

\[
\begin{array}{ccc}
S_{n,a} & \xrightarrow{G} & R_{n-a-1} \\
\downarrow q & & \downarrow g \\
\hat{S}_{n,a} & \xrightarrow{\hat{G}} & \hat{R}_{n-a-1}
\end{array}
\]

Eisenbud and Van de Ven [2, p. 97] proved that \(G \) is birationally the projection of a product with fiber rational of dimension \(2a + 5 \). If \(n - a \) is even, by Lemma 1 \(g \) has a rational section. Thus \(\hat{R}_{n-a-1} \) is stably rational of level 3, \(\hat{G} \) is birationally a product with fiber \(\mathbb{P}_2^{a+5} \) and \(\hat{S}_{n,a} \) is rational. This concludes the proof of Theorem 1.

If \(n - a \) is odd, \(a > 0 \), we do not know very much. A trick easily gives the following

Proposition 1. Assume \(a > 0 \). Then \(\hat{S}_{n,a} \) is covered by rational subvarieties of codimension 2.

Proof. Fix a point \(O \in \mathbb{P}_1 \) and a point \(P \) in \(\mathbb{P}_3 \). Let \(A_n \) be the set of embeddings \(f \) of \(\mathbb{P}_1 \) into \(\mathbb{P}_3 \) with \(f(O) = P \) and deg(\(f(\mathbb{P}_1) \)) = \(n \). \(A_n \) is rational. The affine group of projective transformations of \(\mathbb{P}_1 \) fixing \(O \) acts on \(A_n \) and let \(\hat{A}_n \subset \text{Hilb } \mathbb{P}_3 \) be the quotient. \(\hat{A}_n \) is the subset of \(A_n \) formed by curves through \(P \). The map \(A_n \to \hat{A}_n \) has always a rational section. This follows from the speciality of the affine group [3, Lemme 2.3]. Alternatively the restriction to \(\hat{A}_n \) of the conic bundle of Lemma 1 comes from a vector bundle since the point \(P \) defines a line bundle on \(p^{-1}(\hat{A}_n) \) with degree one on every fiber.
Thus \tilde{A}_{n-a-1} is stably rational of level 2 and $\tilde{G} | \tilde{G}^{-1}(\tilde{A}_{n-a-1})$ has a rational section. Thus $\tilde{G}^{-1}(\tilde{A}_{n-a-1})$ is a rational subvariety of codimension 2 of $\tilde{S}_{n,a}$.

For $a = 0$ the same method gives only that \tilde{S}_n is covered by codimension 2 subvarieties which are stably rational of level 2.

REFERENCES

DEPARTMENT OF MATHEMATICS, SCUOLA NORMALE SUPERIORE, 56100 PISA, ITALY