Remark on the divisibility of the class numbers of certain quartic number fields by $5$
HTML articles powered by AMS MathViewer
- by Akira Endô
- Proc. Amer. Math. Soc. 91 (1984), 513-517
- DOI: https://doi.org/10.1090/S0002-9939-1984-0746079-X
- PDF | Request permission
Abstract:
The congruence relation modulo 5 between the class numbers of the real and imaginary quartic subfields of the extension of a quadratic number field obtained by adjoining a fifth root of unity is studied.References
- Helmut Hasse, Arithmetische Bestimmung von Grundeinheit und Klassenzahl in zyklischen kubischen und biquadratischen Zahlkörpern, Abh. Deutsch. Akad. Wiss. Berlin. Math.-Nat. Kl. 1948 (1948), no. 2, 95 pp. (1950) (German). MR 33863
- Tomio Kubota, Über den bizyklischen biquadratischen Zahlkörper, Nagoya Math. J. 10 (1956), 65–85 (German). MR 83009, DOI 10.1017/S0027763000000088
- Aichi Kudo, On a class number relation of imaginary abelian fields, J. Math. Soc. Japan 27 (1975), 150–159. MR 360520, DOI 10.2969/jmsj/02710150
- Sigekatu Kuroda, Über den Dirichletschen Körper, J. Fac. Sci. Imp. Univ. Tokyo Sect. I. 4 (1943), 383–406 (German). MR 0021031 —, Über die Klassenzahlen algebraischer Zahlkörper, Nagoya Math. J. 1 (1950), 1-10.
- Charles J. Parry, Real quadratic fields with class numbers divisible by five, Math. Comp. 31 (1977), no. 140, 1019–1029. MR 498483, DOI 10.1090/S0025-5718-1977-0498483-X
- Charles J. Parry, On the class number of relative quadratic fields, Math. Comp. 32 (1978), no. 144, 1261–1270. MR 502013, DOI 10.1090/S0025-5718-1978-0502013-4
Bibliographic Information
- © Copyright 1984 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 91 (1984), 513-517
- MSC: Primary 11R29; Secondary 11R16
- DOI: https://doi.org/10.1090/S0002-9939-1984-0746079-X
- MathSciNet review: 746079