Localized group rings, the invariant basis property and Euler characteristics
HTML articles powered by AMS MathViewer
- by K. R. Goodearl
- Proc. Amer. Math. Soc. 91 (1984), 523-528
- DOI: https://doi.org/10.1090/S0002-9939-1984-0746081-8
- PDF | Request permission
Abstract:
The technique of embedding a complex group algebra into the von Neumann regular ring associated with the corresponding ${W^ * }$ group algebra is exploited to prove that certain localizations of a group ring $KG$ possess the invariant basis property. From this it follows, using a method of S. Rosset, that certain $KG$-modules have zero Euler characteristic. The assumptions are that $K$ is a commutative integral domain of characteristic zero, and that $G$ has a nontrivial, torsion-free, abelian normal subgroup $A$. The main result of the paper is that the localization of $KG$ obtained by inverting all elements of the form $\alpha - a$, where $\alpha$ is a nonzero element of $K$ and $a$ is a nontrivial element of $A$, has the invariant basis property; more generally, this localization and all its matrix rings are directly finite. (M. Smith has extended the methods of this paper to cover the localization of $KG$ obtained by inverting all nonzero elements of $KA$.) Given a $KG$-module $M$ which has a finite free resolution, such that $M$ is finitely generated over $K$, it is proved that the Euler characteristic of $M$ is zero. This verifies an unpublished result of Rosset.References
- S. K. Berberian, The maximal ring of quotients of a finite von Neumann algebra, Rocky Mountain J. Math. 12 (1982), no. 1, 149–164. MR 649748, DOI 10.1216/RMJ-1982-12-1-149
- Steven A. Gaal, Linear analysis and representation theory, Die Grundlehren der mathematischen Wissenschaften, Band 198, Springer-Verlag, New York-Heidelberg, 1973. MR 0447465
- K. R. Goodearl, Ring theory, Pure and Applied Mathematics, No. 33, Marcel Dekker, Inc., New York-Basel, 1976. Nonsingular rings and modules. MR 0429962 —, Von Neumann regular rings, Pitman, London, 1979.
- Irving Kaplansky, Fields and rings, University of Chicago Press, Chicago, Ill.-London, 1969. MR 0269449
- Irving Kaplansky, Commutative rings, Allyn and Bacon, Inc., Boston, Mass., 1970. MR 0254021
- George W. Mackey, The theory of unitary group representations, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, Ill.-London, 1976. Based on notes by James M. G. Fell and David B. Lowdenslager of lectures given at the University of Chicago, Chicago, Ill., 1955. MR 0396826
- F. I. Mautner, Unitary representations of locally compact groups. I, Ann. of Math. (2) 51 (1950), 1–25. MR 32650, DOI 10.2307/1969494
- F. J. Murray and J. Von Neumann, On rings of operators, Ann. of Math. (2) 37 (1936), no. 1, 116–229. MR 1503275, DOI 10.2307/1968693
- Donald S. Passman, The algebraic structure of group rings, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1977. MR 0470211
- J. T. Schwartz, $W^{\ast }$-algebras, Gordon and Breach Science Publishers, New York-London-Paris, 1967. MR 0232221
- Martha K. Smith, Central zero divisors in group algebras, Proc. Amer. Math. Soc. 91 (1984), no. 4, 529–531. MR 746082, DOI 10.1090/S0002-9939-1984-0746082-X
- John Stallings, Centerless groups—an algebraic formulation of Gottlieb’s theorem, Topology 4 (1965), 129–134. MR 202807, DOI 10.1016/0040-9383(65)90060-1
- Bo Stenström, Rings of quotients, Die Grundlehren der mathematischen Wissenschaften, Band 217, Springer-Verlag, New York-Heidelberg, 1975. An introduction to methods of ring theory. MR 0389953 D. M. Topping, Lectures on Von Neumann algebras, Van Nostrand Reinhold, New York, 1971.
Bibliographic Information
- © Copyright 1984 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 91 (1984), 523-528
- MSC: Primary 16A27
- DOI: https://doi.org/10.1090/S0002-9939-1984-0746081-8
- MathSciNet review: 746081