$C(K, E)$ contains a complemented copy of $c_{0}$
HTML articles powered by AMS MathViewer
- by Pilar Cembranos
- Proc. Amer. Math. Soc. 91 (1984), 556-558
- DOI: https://doi.org/10.1090/S0002-9939-1984-0746089-2
- PDF | Request permission
Abstract:
Let $E$ be a Banach space and let $K$ be a compact Hausdorff space. We denote by $C(K,E)$ the Banach space of all $E$-valued continuous functions defined on $K$, endowed with the supremum norm. We prove in this paper that if $K$ is infinite and $E$ is infinite-dimensional, then $C(K,E)$ contains a complemented subspace isomorphic to ${c_0}$.References
- C. Bessaga and A. Pełczyński, On bases and unconditional convergence of series in Banach spaces, Studia Math. 17 (1958), 151–164. MR 115069, DOI 10.4064/sm-17-2-151-164
- Philip C. Curtis Jr., A note concerning certain product spaces, Arch. Math. 11 (1960), 50–52. MR 111008, DOI 10.1007/BF01236906
- J. Diestel and J. J. Uhl Jr., Vector measures, Mathematical Surveys, No. 15, American Mathematical Society, Providence, R.I., 1977. With a foreword by B. J. Pettis. MR 0453964, DOI 10.1090/surv/015
- Surjit Singh Khurana, Grothendieck spaces, Illinois J. Math. 22 (1978), no. 1, 79–80. MR 458144
- Joram Lindenstrauss and Lior Tzafriri, Classical Banach spaces. I, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 92, Springer-Verlag, Berlin-New York, 1977. Sequence spaces. MR 0500056, DOI 10.1007/978-3-642-66557-8
- A. Nissenzweig, $W^{\ast }$ sequential convergence, Israel J. Math. 22 (1975), no. 3-4, 266–272. MR 394134, DOI 10.1007/BF02761594
- A. Pełczyński, Banach spaces on which every unconditionally converging operator is weakly compact, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 10 (1962), 641–648. MR 149295
- Elias Saab and Paulette Saab, A stability property of a class of Banach spaces not containing a complemented copy of $l_{1}$, Proc. Amer. Math. Soc. 84 (1982), no. 1, 44–46. MR 633274, DOI 10.1090/S0002-9939-1982-0633274-1
- Andrew Sobczyk, Projection of the space $(m)$ on its subspace $(c_0)$, Bull. Amer. Math. Soc. 47 (1941), 938–947. MR 5777, DOI 10.1090/S0002-9904-1941-07593-2
Bibliographic Information
- © Copyright 1984 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 91 (1984), 556-558
- MSC: Primary 46B25; Secondary 46E40
- DOI: https://doi.org/10.1090/S0002-9939-1984-0746089-2
- MathSciNet review: 746089