Inversion and representation for the Poisson-Laguerre transform
HTML articles powered by AMS MathViewer
- by Deborah Tepper Haimo
- Proc. Amer. Math. Soc. 91 (1984), 559-567
- DOI: https://doi.org/10.1090/S0002-9939-1984-0746090-9
- PDF | Request permission
Abstract:
The Poisson-Laguerre transform of a function $\phi$ is given by \[ u(n,t) = \sum \limits _{m = 0}^\infty {g(n,m;t)\phi (m)\frac {{m!}}{{\Gamma (m + \alpha + 1)}}} \] where $g$, defined by \[ g(n,m;t) = \frac {{\Gamma (n + m + \alpha + 1)}}{{n!m!}}\frac {{{t^{m + m}}}}{{{{(1 + t)}^{n + m + \alpha + 1}}}}{ \cdot _2}{F_1}\left ( { - n, - m; - n - m - \alpha ;1 - \frac {1}{{{t^2}}}} \right ),\] s the associated function of the source solution $g(n;t) = g(n,0;t)$ of the Laguerre difference heat equation \[ {\nabla _n}u(n,t) = {u_t}(n,t),\] with \[ {\nabla _n}f(n) = (n + 1)f(n + 1) = (2n + \alpha + 1)f(n) + (n + \alpha )f(n - 1).\] A simple algorithm for the inversion of the transform $(*)$ is derived. For $m = 0$, the transform $(*)$ is basically a power series so that the inversion algorithm leads to a useful identity involving binomial coefficients. In addition, a subclass of functions is characterized that is representable by a Poisson-Laguerre transform $(*)$.References
- Deborah Tepper Haimo and Frank M. Cholewinski, Integral representations of solutions of te generalized heat equation, Illinois J. Math. 10 (1966), 623–638. MR 199653
- F. M. Cholewinski and D. T. Haimo, Laguerre temperatures, Orthogonal Expansions and their Continuous Analogues (Proc. Conf., Edwardsville, Ill., 1967) Southern Illinois Univ. Press, Carbondale, Ill., 1968, pp. 197–226. MR 0232170
- Deborah Tepper Haimo and Frank M. Cholewinski, Inversion of the reduced Poisson-Hankel transform, J. Analyse Math. 25 (1972), 323–343. MR 306825, DOI 10.1007/BF02790044 A. Erdélyi et al, Higher transcendental functions, McGraw-Hill, New York, 1953.
- Deborah Tepper Haimo, The reduced dual Poisson-Laguerre transform, J. Math. Anal. Appl. 104 (1984), no. 2, 489–511. MR 766146, DOI 10.1016/0022-247X(84)90015-5
- D. V. Widder, The role of the Appell transformation in the theory of heat conduction, Trans. Amer. Math. Soc. 109 (1963), 121–134. MR 154068, DOI 10.1090/S0002-9947-1963-0154068-2
- David V. Widder, The inversion of a transform related to the Laplace transform and to heat conduction, J. Austral. Math. Soc. 4 (1964), 1–14. MR 0161097
- David Vernon Widder, The Laplace Transform, Princeton Mathematical Series, vol. 6, Princeton University Press, Princeton, N. J., 1941. MR 0005923
Bibliographic Information
- © Copyright 1984 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 91 (1984), 559-567
- MSC: Primary 44A15; Secondary 39A99
- DOI: https://doi.org/10.1090/S0002-9939-1984-0746090-9
- MathSciNet review: 746090