ON THE HANS LEWY EXTENSION PHENOMENON
IN HIGHER CODIMENSION

C. D. HILL¹ AND G. TAIANI²

ABSTRACT. In this work the authors extend the results of their paper entitled Families of analytic discs in Cⁿ with boundaries on a prescribed CR submanifold. It is proven that a nongeneric CR manifold M whose Lewy form is not identically zero can be extended to a manifold ¯¯M of one higher dimension, which is foliated by analytic discs. Moreover this result is used to prove that a sufficiently smooth CR function f on M extends to a function ¯f which is CR on ¯M.

1. Introduction. This work was inspired by the work of H. Lewy (see [5–7]). He proved the following theorem: let S be a sufficiently smooth real hypersurface in Cᴺ (N ≥ 2) whose Levi form at the origin does not vanish identically, then there is an open set Ω in Cᴺ, lying on one side of S, with S ∩ ¯Ω a neighborhood of the origin in S, such that any sufficiently smooth function f on S ∩ Ω, which satisfies the tangential Cauchy-Riemann equations to S there, has a unique extension to a holomorphic function ¯f in Ω with ¯f|S∩Ω = f. In this work we prove that if the hypersurface S is replaced by a real, CR submanifold M in Cᴺ whose codimension is greater than one, then there exists a CR “manifold-with-boundary” ¯M with ¯M ∩ M a neighborhood of the origin in M, such that any sufficiently smooth function f on ¯M ∩ M, which satisfies the tangential Cauchy-Riemann equations to M there, has a unique extension to a function ¯f which satisfies the tangential Cauchy-Riemann equations to ¯M (see Theorem 2).

2. Preliminaries. We shall use the same notation as in [3]. Our manifolds M will be embedded CR manifolds, i.e. M ⊂ Cᴺ and if p ∈ M the complex dimension of the largest complex subspace of Tᵖ(M), Tᵖ(Cᴺ) being the (real) tangent space to M at p, is a constant independent of p. This constant is called the CR dimension of M and the CR codimension of M is defined to be the dimension of M minus twice its CR dimension. A manifold M ⊂ Cᴺ will be called of type (m, l) if the CR dimension of M = m and the CR codimension of M = l. Thus a manifold of type (m, l) has dimension d = 2m + l. Let k = N − (l + m). We will call a CR manifold generic if and only if k = 0, i.e. if and only if the codimension of M = the CR codimension of M. We deal with the nongeneric case.

Received by the editors April 4, 1983. The contents of the paper were presented by the second author at a meeting of the AMS at Bryn Mawr, Pennsylvania, in March, 1982.

1980 Mathematics Subject Classification. Primary 32A99, 32C10, 32F25; Secondary 35F20, 41A10.

¹Research supported by a Grant from the National Science Foundation.

²Research supported by the Pace University Scholarly Research Committee.

©1984 American Mathematical Society

0002-9939/84 $1.00 + $.25 per page

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
We can locally express any embedded CR manifold M of dimension d contained in \mathbb{C}^N by a system of $q = 2N - d$ (real) equations, $\rho_i(z) = 0$, $1 \leq i \leq q$, where $z = (z_1, \ldots, z_N) \in \mathbb{C}^N$ and $d\rho_1 \wedge d\rho_2 \wedge \cdots \wedge d\rho_q \neq 0$ on M. The space of holomorphic tangent vectors at p in M is characterized by

$$HT_p(M) = \left\{ X = \sum_{j=1}^N a_j \frac{\partial}{\partial z_j} \left| \sum_{j=1}^N a_j \frac{\partial \rho_j}{\partial z_j}(p) = 0, 1 \leq i \leq q \right\},$$

where the a_j are complex numbers. The antiholomorphic tangent space $HT^*_p(M)$ is defined by complex conjugation. A differentiable function f on M is a CR function on M if and only if $Xf(p) = 0$ for every $X \in HT^*_p(M)$ and every $p \in M$.

By the Levi form of M at p we will mean the following vector-valued form $L_p: HT_p(M) \to N_p(M)$, where $N_p(M)$ is the space of normal vectors to M at p. Choosing the functions ρ_1, \ldots, ρ_q above so that at $p \in M$, $d\rho_1(p), \ldots, d\rho_q(p)$ are orthonormal and letting $(\xi_1, \xi_2, \ldots, \xi_q) \in \mathbb{C}^N$ denote the components of the holomorphic tangent vector $Z(p)$ we can explicitly define the Levi form of M at p by

$$L_p(Z) = \sum_{i=1}^q \left| \sum_{j,k=1}^N 4 \frac{\partial^2 \rho_j}{\partial z_j \partial \overline{z}_k} (p) \xi_j \overline{\xi}_k \right| d\rho_i(p),$$

(2.1)

A differentiable transformation between two CR manifolds, $\psi: X \to Y$, $X \subset \mathbb{C}'$, $Y \subset \mathbb{C}^s$ is said to be a CR map at $p \in X$ if the complexified differential satisfies $d\psi_p: HT_p(X) \to HT_{\psi(p)}(Y)$ for all p' in a neighborhood of p in X. We say that ψ is a CR map on X if it is a CR map at each point $p \in X$. Moreover, if ψ has components, ψ_1, \ldots, ψ_q, then ψ is a CR map if and only if each component ψ_j is a CR function on X (see [4]). We have the following proposition (see [4] for a proof).

Proposition 1. Let M_1 be a CR manifold $M_1 \subset \mathbb{C}^N$ of type (m, l) such that M_1 can be written as a graph over its tangent space at some point in M_1. Let $\psi: M_1 \to \mathbb{C}'$ and let $M_2 \subset \mathbb{C}^{N+5}$ be the graph of ψ over M_1. Then M_2 is a CR manifold of the same type (m, l) if and only if the function $\phi = (I, \psi): M_1 \to M_2$ is a CR map; i.e. if and only if each component of ψ is a CR function of M_1.

We shall also rely heavily on the following slight modification of a theorem of Baouendi and Treves [1] (see [4] for the modified proof).

Proposition 2. Let $M \subset \mathbb{C}^N$ be an embedded CR manifold of type (m, l) and class C^2, $2 \leq s \leq \infty$. Then there exists an open neighborhood U of the origin in \mathbb{C}^N such that for any f which is a CR function on M of class C', $2 \leq t \leq s \leq \infty$, there exists a sequence of polynomials p^j such that $p^j \to f$ in $C^{s-1}(U \cap M)$.

We shall also use the fact that any nongeneric CR manifold M' of type (m, l) contained in $\mathbb{C}^N = \mathbb{C}^l \times \mathbb{C}^m \times \mathbb{C}^k$ can be expressed (locally) as the image by a CR map of a generic manifold $M \subset \mathbb{C}^n = \mathbb{C}^l \times \mathbb{C}^n$. We recall the argument from [4] and fix notation for use in §§3 and 4. For, without loss of generality, we can assume that
$0 \in M', \, T_0(M') = \mathbb{R}^r \times \mathbb{C}^m \times \{0\} \cong \mathbb{R}^r \times \mathbb{C}^m$ and, for U' a sufficiently small neighborhood of the origin in \mathbb{C}^N, we have

$$M' = \left\{ (z_1, \ldots, z_N) \in U' \left| \begin{array}{l}
\eta = 1, \ldots, l,
\eta = 1, \ldots, l,
\end{array} \right. \right\}$$

where h_η, h'_η, h''_η are real-valued functions defined in some neighborhood of the origin $\tilde{\Omega}'$ in $\mathbb{R}^r \times \mathbb{C}^m$. Let $\pi: \mathbb{C}^N \rightarrow \mathbb{C}^n$ be a projection onto the first n components and define $M = \pi(M')$. Then, restricting U' and Ω' if necessary, we have that M is a generic CR manifold of type (m, l) in \mathbb{C}^n defined by

$$M = \left\{ (z_1, \ldots, z_n) \in \pi(U') \subset \mathbb{C}^n \left| \begin{array}{l}
y = h_\eta(x_1, \ldots, x_l, z_{l+1}, \ldots, z_n),\quad \eta = 1, \ldots, l,
y = h_\eta(x_1, \ldots, x_l, z_{l+1}, \ldots, z_n),\quad \eta = 1, \ldots, l,
\end{array} \right. \right\}.$$

The function $\phi = \left\{ \pi \mid_{M'} \right\}^{-1}: M \rightarrow M' \subset \mathbb{C}^N$ can be expressed by

$$\phi_\eta(z_1, \ldots, z_n) = \left\{ \begin{array}{l}
\eta
\eta
\end{array} \right\}$$

for $(z_1, \ldots, z_n) \in M$ and $\eta = 1, \ldots, N$. We have by Proposition 1 that ϕ is a CR map and thus each ϕ_η is a CR function on M.

3. On going up one dimension in the nongeneric case. Our main theorem, stated below, extends the results of §9 [3, Theorem 9.1, p. 364] to the nongeneric case.

Theorem 1. Let M be a real d-dimensional CR manifold of type (m, l) embedded in \mathbb{C}^N. Let $\xi \neq 0$ be a Levi vector at some point $p \in M$. Then (with the amount of differentiability stated below) there exists a local, real $d + 1$-dimensional embedded CR manifold-with-boundary \tilde{M} of type $(m + 1, l - 1)$ such that the boundary of \tilde{M} is equal to an open neighborhood of p in M, and with $T_p(\tilde{M}) = \text{span}(T_p(M), \xi)$. Moreover, \tilde{M} is foliated by a real $d - 1$ parameter family of complex one-dimensional analytic discs with their boundaries on M:

(i) If M is of class C^B and $B \geq 5$, then \tilde{M} is of class $C^{((B - 2)/3), 1/2}$.

(ii) If M is real analytic then \tilde{M} is a real analytic; moreover, \tilde{M} has a "border" $\tilde{M}_8 - \tilde{M}$ in the sense that \tilde{M} extends real analytically to a slightly larger \tilde{M}_8 (also foliated) such that $M \subset \tilde{M}_8$ forms an embedded real analytic hypersurface in \tilde{M}_8.

(iii) If M is of class C^∞, then \tilde{M} is of class C^∞.

Proof. The case $k = 0$ is exactly Theorem 9.1 proved in [3]. Therefore we assume $k > 0$. In the proof it will also be convenient to change notation from M, N, ξ to M', N, ξ'. As in [3], we can assume that we have chosen a convenient coordinate system so that

$$\begin{align*}
p &= 0, \\
T_0(M') &= \mathbb{R}^r \times \mathbb{C}^m \times \{0\} = \{(x, w, 0)\}, \\
N_0(M') &= i\mathbb{R} \times \{0\} \times \mathbb{C}^k = \{(iy, 0, z')\}, \\
HT_0(M') &= \{0\} \times \mathbb{C}^m \times \{0\} = \{(0, w, 0)\}, \\
\xi' &= dy_1 = L_0(\partial/\partial w_1),
\end{align*}$$

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
where \(x = (x_1, \ldots, x_t) \), \(y = (y_1, \ldots, y_t) \), \(z = x + iy \), \(w = (w_1, \ldots, w_m) \), \(z' = (z'_1, \ldots, z'_k) \). Defining \(M = \pi(M') \) as above in (2.3) we have that \(T_0(M) = T_0(M') \), \(HT_0(M) = HT_0(M') \), \(N_0(M) = i\mathbb{R} \times \{0\} = \{(iy, 0)\} \) and using 2.1 we have that

\[
\xi \equiv L_0 \left(\frac{\partial}{\partial w_i} \right) = L_0' \left(\frac{\partial}{\partial w_i} \right) = \xi'.
\]

As stated in §2, we have that \(\phi: M \to M' \) is a CR diffeomorphism and thus each component of \(\phi \) is a CR function on \(M \). By (2.3) we have that \(\phi_n, 1 \leq n \leq n', \) are each of the identity functions on \(M \). The modified result of Bavendi and Trèves, Proposition 2, yields that there exists \(U \), a neighborhood of the origin in \(\mathbb{C}^n \), and sequences of holomorphic polynomials \(\{f_j\} \), \(1 \leq n \leq k \), such that for each \(n \), \(f_j^n \to \phi_{n, +v} \) on \(\mathbb{C}^{n-1} \cap M \). Since \(\phi_{n, +v} (0) = d\phi_{n, +v} (0) = 0 \) and \(\beta > 5 \) we can assume that the \(f_j^n \) were chosen such that they all vanish to second order at the origin. Since \(M \) is generic we can, using Theorem 9 of [3], construct \(\tilde{M} \), an \((m + 1, l - 1) \) CR manifold as in Theorem 1. Thus \(\tilde{M} \) is of class \(C^{(\beta - 2)/3, 1/2} \) and is foliated by analytic discs with boundaries on \(M \). By the maximum principle we have that for each \(n \), \(\{f_j^n\} \) is uniformly Cauchy on each leaf of the foliation of \(\tilde{M} \). Restricting our attention to a slightly smaller compact submanifold of \(M \) (which contains \(0 \) we have that if we define \(\tilde{\phi}_{n, +v} \) to be the limit \(\lim_{j \to \infty} f_j^n \) on \(M' \), then \(\tilde{\phi}_{n, +v} \in C^0(\tilde{M}) \) and \(\tilde{\phi}_{n, +v} | M = \phi_{n, +v} \). Moreover, since \(M \) is generic any vector field of the form \(D_{z^n} \), \(1 \leq n \leq n' \), is in the complex linear space of vector fields tangential to \(M \) (see [4, Lemma 3.1]). Therefore, for each fixed \(n \), \(1 \leq n \leq k \), \(\{D_{z^n} f_j^n\} \) is uniformly Cauchy on \(C^{\beta - 2}(M) \). Continuing by induction, we have that \(\{D_{z^n} f_j^n\} \) is uniformly Cauchy on \(C(M) \) for all \(|\alpha| \leq \beta - 1, n \) fixed. Applying the maximum principle we have that \(\{D_{z^n} f_j^n\} \) is uniformly Cauchy on \(C(M) \) for \(1 \leq n \leq n', \) \(\nu \) fixed, and \(|\alpha| \leq \beta - 1 \). Since \(M \) is at least of class \(C^{(\beta - 2)/3, 1/2} \), we have \(f_j^n \to \phi_{n, +v} \) on \(C^{(\beta - 2)/3, 1/2}(\tilde{M}) \). In particular, if \(X \in HT_p(\tilde{M}) \), since \((\beta - 2)/3 > 1 \), we have \(Xf_j^n \to X\tilde{\phi}_{n, +v} \) on \(\tilde{M} \) and since \(Xf_j^n \equiv 0 \) on \(\tilde{M} \) we have that \(\tilde{\phi}_{n, +v} \) is CR on \(\tilde{M} \), for each \(1 \leq n \leq k \).

Let \(\tilde{\phi} = (\tilde{I}, \tilde{\phi}_{n, +1}, \ldots, \tilde{\phi}_{n, n}) \), \(\tilde{\phi} | M = \phi \) and defining \(\tilde{M}' = \tilde{\phi}(M) \) we have that \(\tilde{M}' \) is the graph of \((\tilde{\phi}_{n, +1}, \ldots, \tilde{\phi}_{n, n}) \) over \(M \). By Proposition 1 we have that \(\tilde{M}' \) is a CR manifold of type \((n + 1, l - 1) \). Moreover, since \(\tilde{M} \) is foliated by a real \(d - 1 \) parameter family of complex one-dimensional analytic submanifolds (discs) with their boundaries on \(M \) and \(\tilde{\phi} \) is CR on \(\tilde{M} \), we have that \(\tilde{M}' \) is also foliated by a real \(d - 1 \) parameter family of discs. Since the boundary of \(\tilde{M} \subset M \), we have that the boundary of \(\tilde{M}' = \text{boundary of } \tilde{\phi}(M) \subset \tilde{\phi}(M) = \phi(M) = M' \). All we need prove now to complete cases (i) and (iii) is that

\[
T_0(\tilde{M}') = T_0(\tilde{M}) = \text{span}(T_0(M), \xi) = \text{span}(T_0(M'), \xi')
\]

which is equivalent to proving \(d\tilde{\phi}_{n, +v}(0) = 0 \). This follows since \(f_j^n \to \tilde{\phi}_{n, +v} \) in \(C^1(\tilde{M}) \) and each \(f_j^n \) vanish to second order at the origin.

For the real analytic case we have, using Tomassini [8] or Lemma 2.3 of [2], that \(\phi_{n, +v} \) is the trace of \(M \) of a holomorphic function. Applying Theorem 8.2 of [3] to \(\phi_{n, +v} \) yields the extension \(\tilde{\phi}_{n, +v} \) which is holomorphic in a neighborhood of \(\tilde{M}_b \). Defining \(\tilde{\phi} = (\tilde{I}, \tilde{\phi}_{n, +1}, \ldots, \tilde{\phi}_{n, n}) \), \(\tilde{M}' = \tilde{\phi}(\tilde{M}) \) and \(\tilde{M}'_b = \tilde{\phi}(\tilde{M}_b) \) yields the above result.
4. The extension of CR functions. We now state and prove Theorem 2. It is, in fact, a corollary of Theorem 1 but it is so interesting in its own right, that we feel it deserves the status of theorem.

Theorem 2. Let $M \subset \mathbb{C}^N$ be a CR manifold of class C^β, $\beta \geq 5$, and let $\xi \neq 0$ be a Levi vector at some point $p \in M$. Let f be a C^k, $2 \leq k \leq \beta$, function defined and satisfying the tangential Cauchy-Riemann equations to M in a neighborhood of p. Then there exists a neighborhood U of $p \in M$ such that $f|_U \cap M$ can be extended to a CR function \tilde{f} of class C^μ, where $\mu = \min(k - 1, \{(\beta - 2)/3, 1/2\})$, defined on the CR manifold \tilde{M} whose existence is proved in Theorem 1. This extension is unique and if f and M are both C^∞ or real analytic, then \tilde{f} is also of the same class.

Proof. We can consider M to be of type (m, l) and to be in the form (2.2). Moreover, we can consider \tilde{M} to be constructed as in Theorem 1. Thus the space of tangent vectors to M and \tilde{M} is in the complex linear space of dz_1, \ldots, dz_n, where $n = m + l$. From Proposition 2 we have that there exists $\hat{U} \subset \mathbb{C}^N$ and polynomials p_j defined on \hat{U} such that $p_j \to f$ in $C^{k-1}(M \cap \hat{U})$. As above, the maximum principle yields a unique function \tilde{f} such that $p_j \to \tilde{f}$ in $C(\tilde{M} \cap \hat{U})$. Moreover, given D^α, $1 \leq \eta \leq n$, $D^\alpha p_j \to f$ in $C(M \cap \hat{U})$ for $|\alpha| \leq k - 1$ and thus by the maximum principle $\{D^\alpha p_j\}$ is a Cauchy sequence in \tilde{M} But this means that $p_j \to \tilde{f}$ on $C^\mu(\tilde{M} \cap \hat{U})$ with μ as above. Since $\mu \geq 1$ and the polynomials are holomorphic, we have that \tilde{f} is CR on $\tilde{M} \cap \hat{U}$.

The final remark about the smoothness clearly follows from Theorem 1 cases (ii) and (iii).

REFERENCES

DEPARTMENT OF MATHEMATICS, PACE UNIVERSITY, PACE PLAZA, NEW YORK, NEW YORK 10038