On a generalized moment problem. II
HTML articles powered by AMS MathViewer
- by J. S. Hwang and G. D. Lin
- Proc. Amer. Math. Soc. 91 (1984), 577-580
- DOI: https://doi.org/10.1090/S0002-9939-1984-0746093-4
- PDF | Request permission
Abstract:
Recently, we have extended the well-known Müntz-Szász theorem by showing that if $f(z)$ is absolutely continuous and $|f’(x)| \geqslant k > 0$ a.e. on $(a,b)$, where $a \geqslant 0$ and if $\{ {n_p}\}$ is a sequence of positive numbers tending to infinity and satisfying $\sum _{p = 1}^\infty 1/{n_p} = \infty$, then the sequence $\{ f{(x)^{{n_p}}}\}$ is complete on $(a,b)$ if and only if $f(x)$ is strictly monotone on $(a,b)$. We now apply Zarecki’s theorem to improve the condition "$|f’(x)| \geqslant k > 0$ a.e. on $(a,b)$" by the condition $f’(x) \ne 0$ a.e. on $(a,b)$". Furthermore, we extend some well-known theorems of Picone, Mikusiński, and Boas.References
- R. P. Boas Jr., Remarks on a moment problem, Studia Math. 13 (1953), 59–61. MR 58666, DOI 10.4064/sm-13-1-59-61
- Ralph Philip Boas Jr., Entire functions, Academic Press, Inc., New York, 1954. MR 0068627
- J. S. Hwang, On a generalized moment problem, Proc. Amer. Math. Soc. 87 (1983), no. 1, 88–89. MR 677238, DOI 10.1090/S0002-9939-1983-0677238-1
- Jan G. Mikusiński, Remarks on the moment problem and a theorem of Picone, Colloq. Math. 2 (1951), 138–141. MR 43150, DOI 10.4064/cm-2-2-138-141
- I. P. Natanson, Theory of functions of a real variable, Frederick Ungar Publishing Co., New York, 1955. Translated by Leo F. Boron with the collaboration of Edwin Hewitt. MR 0067952 S. Saks, Theory of the integral, Monografie Matematyczne, PWN, Warsaw, 1937.
Bibliographic Information
- © Copyright 1984 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 91 (1984), 577-580
- MSC: Primary 44A60; Secondary 26A48
- DOI: https://doi.org/10.1090/S0002-9939-1984-0746093-4
- MathSciNet review: 746093