COMPLEX FOLIATIONS GENERATED BY (1, 1)-FORMS

M. KLIMEK

Abstract. Complex foliations generated by (1, 1)-forms are studied in order to describe geometric properties of complex partial differential equations of Monge-Ampère type.

1. Introduction. Let \(\alpha = \frac{i}{2} \sum \alpha_{jk} \, dz_j \wedge d\bar{z}_k \) be a \(C^1 \)-differential form on an open set \(\Omega \subset \mathbb{C}^n \). By \(\alpha^m \) we shall denote the \(m \)th exterior power of \(\alpha \) (\(\alpha^0 \equiv 1 \)). If \(z \in \Omega \) then \(N_z(\alpha) \) is the nullity space of \(\alpha \) at \(z \) i.e.

\[
N_z(\alpha) = \{ x \in \mathbb{C}^n : \alpha_z(x, y) = 0 \text{ for all } y \in \mathbb{C}^n \}.
\]

If for each \(z \in \Omega \), the linear operator corresponding to the matrix \([\alpha_{jk}(z)] \) is reduced by its range we say that \(\alpha \) is reducible. A detailed geometric characterization of the notion is given in the third section. In particular it is proved there that if the complex rank of \(\alpha \) is \(p \) then the mapping \(z \to N_z(\alpha) \) is a \(\mathbb{C}^1 \)-distribution of real dimension \(2(n - p) \) if and only if \(\alpha \) is reducible.

The aim of this paper is to study complex foliations (i.e. \(\mathbb{C}^1 \)-foliations whose leaves are complex manifolds) generated by reducible differential forms. We are particularly interested in forms \(dd^c u \) where \(u \) is a complex valued \(C^3 \)-function satisfying the Monge-Ampère equation

\[
(1) \quad (dd^c u)^{p+1} = 0
\]

in an open set \(\Omega \subset \mathbb{C}^n \) with \(0 < p < n \). (Recall that \(d = \partial + \bar{\partial} \) and \(d^c = i(\bar{\partial} - \partial) \).)

It is known (see [1]) that if the above equation is nondegenerate i.e.

\[
(2) \quad (dd^c u)^p \neq 0
\]

in \(\Omega \) and \(\text{Im } u \) is plurisubharmonic then there exists a complex foliation \(\mathcal{F} \) of \(\Omega \) such that \(u \) is pluriharmonic along the leaves of \(\mathcal{F} \). We shall prove that this remains true in a more general case when \(dd^c u \) is reducible. Furthermore if for a complex function \(u \) of class \(C^3 \) the nullity spaces of \(dd^c u \) generate a complex foliation of codimension \(p \) then \(dd^c u \) must be reducible.

We shall examine the system of equations of Monge-Ampère type

\[
(3) \quad (dd^c u)^p \wedge (dd^c v)^{q+1} = 0.
\]

\[
(4) \quad (dd^c u)^{p+1} = 0
\]
with the additional nondegeneracy condition
\[(dd^c u)^p \wedge (dd^c v)^q \neq 0\]
where \(p\) and \(q\) are nonnegative integers, \(0 < p + q < n\), \(u\) and \(v\) are complex functions on an open subset \(\Omega\) of \(\mathbb{C}^n\). The conditions (4) and (5) imply that the rank of \(dd^c u\) is constant. Nevertheless the rank of \(dd^c v\) may vary. In particular the equation \((dd^c v)^{p+q+1} = 0\) may be degenerate (cf. Example 5). In general, very little is known about such equations (see [1, 2]). We shall prove that if \(dd^c u\) and \(dd^c v\) are reducible \(\mathcal{E}^1\)-forms satisfying (3), (4) and (5) then there is a complex foliation \(\mathcal{F}\) of \(\Omega\) such that both \(u\) and \(v\) are pluriharmonic when restricted to any leaf of \(\mathcal{F}\).

2. Main results. We shall prove the following.

Theorem 1. Let \(\alpha = (i/2)\sum \alpha_{jk} \ dz_j \wedge d\bar{z}_k\) and \(\beta = (i/2)\sum \beta_{jk} \ dz_j \wedge d\bar{z}_k\) be reducible \(\mathcal{E}^1\)-forms on an open subset \(\Omega\) of \(\mathbb{C}^n\). Let \(A = [\alpha_{jk}]^u\) and \(B = [\beta_{jk}]^v\). Assume \(p\) and \(q\) are nonnegative integers such that \(0 < p + q < n\) and the conditions
\[\alpha^p \wedge \beta^q \neq 0, \quad \alpha^p \wedge \beta^q+1 = 0, \quad \alpha^{p+1} = 0\]
are satisfied in \(\Omega\). Then \(\Delta (z) = N_c(\alpha) \cap N_c(\beta)\) is a \(\mathcal{E}^1\)-distribution over \(\Omega\) of (real) dimension \(2(n - p - q)\) and \(\Delta (z) = \text{Ker} A(z) \cap \text{Ker} B(z)\) for all \(z \in \Omega\). If \(d\alpha\) and \(d\beta\) vanish on \(\Delta(z) \times \Delta(z) \times \mathbb{C}^n\) for each \(z \in \Omega\) the distribution \(\Delta\) is integrable and generates a complex foliation \(\mathcal{F}\) of \(\Omega\) of complex codimension \(p + q\).

The above theorem generalizes some earlier results obtained by Bedford, Kalka [1] and Kalina [3]. Under the additional assumption that \(\alpha = \beta\) and \(\text{Im} \ \alpha > 0\) it has been proved in [1]. For real forms \(\alpha\) of class \(\mathcal{E}^3\) and \(\beta = dd^c u\) with \(\text{Im} u\) plurisubharmonic the result has been shown by Kalina [3]. However the way in which we prove Theorem 1 in this paper is different from the methods used in [1 and 3].

Theorem 1 yields the following two results.

Theorem 2. Let \(u\) and \(v\) be complex functions of class \(\mathcal{E}^3\) on \(\Omega \subset \mathbb{C}^n\) such that \(dd^c u\) and \(dd^c v\) are reducible. Let \(p\) and \(q\) be nonnegative integers such that \(0 < p + q < n\) and the conditions (3), (4) and (5) are satisfied in \(\Omega\). Then there exists a complex foliation \(\mathcal{F}\) of \(\Omega\) by complex submanifolds of codimension \(p + q\) such that for any leaf \(M\) of \(\mathcal{F}\), the restrictions of \(u\) and \(v\) to \(M\) are pluriharmonic on \(M\) and \(\partial \text{Re} u/\partial z_j, \partial \text{Re} v/\partial z_j, \partial \text{Im} u/\partial z_j, \partial \text{Im} v/\partial z_j\) are holomorphic on \(M\) for \(j = 1, 2, \ldots, n\).

Theorem 3. Suppose \(u\) is a complex \(\mathcal{E}^3\)-function on \(\Omega\) such that \(\partial u\) is reducible and for some \(p\) (\(0 < p < n\))
\[\partial u \wedge \partial u \wedge (\partial u)^p = 0, \quad \partial u \wedge \partial u \wedge (\partial u)^{p+1} = 0\]
in \(\Omega\). Then there is a complex foliation \(\mathcal{F}\) on \(\Omega\) of (complex) codimension \(p + 1\) such that for every leaf \(M\) of \(\mathcal{F}\), \(u|\ M\) is holomorphic on \(M\).

If \(u = v\) and \(\text{Im} u\) is plurisubharmonic Theorems 2 and 3 reduce to Theorems 2.4 and 5.1 in [1] respectively.

3. Reducible forms. For any \(\mathbb{C}\)-linear operator \(A: \mathbb{C}^n \to \mathbb{C}^n\), \(\text{Ker} A\) and \(\text{Ran} A\) denote the kernel and range of \(A\) respectively. We consider \(\mathbb{C}^n\) as a Hilbert space
with the inner product $\langle z, w \rangle = \sum z_j \overline{w}_j$. Every operator A induces the orthogonal decompositions $C^n = \text{Ran } A \oplus \text{Ker } A^* = \text{Ran } A^* \oplus \text{Ker } A$. Moreover if U is a unitary operator and P is a projection then UPU^* is again a projection. Hence we have

Lemma 1. If $A: C^n \to C^n$ is a C-linear operator of rank $p < n$ then the following conditions are equivalent:

1. $\text{Ran } A$ reduces A,
2. $\text{Ran } A = \text{Ran } A^*$ and $\text{Ker } A = \text{Ker } A^*$,
3. A commutes with the orthogonal projection onto $\text{Ran } A$,
4. there is a unitary operator $U: C^n \to C^n$ and a C-linear isomorphism $B: C^p \to C^p$ such that for all $(z, w) \in C^p \times C^{n-p}$

$$B(z, 0) = UAU^*(z, w).$$

If A satisfies any of the above conditions, we will say it is reducible.

Example 1. If A is reducible then A'' is also reducible.

Example 2. If $A = S + iT$ where both S and T are Hermitian operators and either S or T is semidefinite then A is reducible. To see this observe if $z \in \text{Ker } A$ then $\langle Az, z \rangle = 0$ and hence $\langle Sz, z \rangle = \langle Tz, z \rangle = 0$ since S and T are Hermitian. If—for instance—S is positive semidefinite, it has a square root $S^{1/2}$, so that $\langle S^{1/2}z, S^{1/2}z \rangle = 0$ and hence $z \in \text{Ker } S$. Consequently $z \in \text{Ker } T$. Therefore $z \in \text{Ker } A^*$.

Example 3. Suppose A is normal i.e. it commutes with its conjugate. Since eigenvectors of A belonging to different eigenvalues are orthogonal, A can be diagonalized by a unitary transformation and so it is reducible.

Lemma 2. If $A: C^n \to C^n$ is C-linear then $N = \{z \in C^n: \langle Az, w \rangle = \langle Aw, z \rangle \text{ for all } w \in C^n\} = \text{Ker } A \cap \text{Ker } A^*$.

Proof. Set $S = \frac{1}{2}(A + A^*)$ and $T = \frac{(A - A^*)}{2i}$. Then both S and T are selfadjoint and $A = S + iT$. Clearly $\text{Ker } A \cap \text{Ker } A^* \subset N$. To prove the opposite inclusion it is enough to show that $N \subset \text{Ker } S \cap \text{Ker } T$. Fix $z \in N$. Then for all $w \in C^n$

$$\langle Sz, w \rangle - \langle Sw, z \rangle + i(\langle Tz, w \rangle - \langle Tw, z \rangle) = 0.$$

But $\langle Sz, w \rangle - \langle Sw, z \rangle = 2i \text{Im}(\langle Sz, w \rangle)$ and $\langle Tz, w \rangle - \langle Tw, z \rangle = 2i \text{Im}(\langle Tz, w \rangle)$. Moreover $\langle x, y \rangle = \text{Im}(x, -iy) + i \text{Im}(x, y)$ for all $x, y \in C^n$. Thus for all $w \in C^n$,

$$\langle Sz, w \rangle = \langle Tz, w \rangle = 0$$

and we are done.

Corollary 1. $N = (\text{Ran } A + \text{Ran } A^*)^\perp$.

Lemma 3. If $\alpha = (i/2)\sum \alpha_{jk} dz_j \wedge d\overline{z}_k$ is a $(1, 1)$-form with constant coefficients and $A = [\alpha_{jk}]^\nu$ then

$$\alpha(x, y) = i \left(\frac{1}{2} (\langle Ax, y \rangle - \langle Ay, x \rangle) \right).$$

Proof. If $x = (x_1, \ldots, x_n)$ and $y = (y_1, \ldots, y_n)$ then $dz_j \wedge d\overline{z}_k(x, y) = x_j \overline{y}_k - y_j \overline{x}_k$ which yields the lemma.
For a positive integer \(p\) define \(c_p\) by setting \(c_p = 2^{-p}\) if \(p\) is even and \(c_p = i2^{-p}\) if \(p\) is odd. Then for multi-indices \(J = (j_1, \ldots, j_p)\) and \(K = (k_1, \ldots, k_p)\) we have
\[
\left(\frac{i}{2}\right)^p \prod_{j=1}^p dz_{j_1} \wedge d\bar{z}_{k_1} \wedge \cdots \wedge dz_{j_p} \wedge d\bar{z}_{k_p} = c_p dz^J \wedge d\bar{z}^K.
\]
As a consequence of this equality and the definition of the determinant function we get

Lemma 4. If \(\alpha = (i/2)\sum_{j,k} \alpha_{jk} dz_j \wedge d\bar{z}_k\) has constant coefficients then
\[
\alpha^p = p!c_p \sum_{J,K} \alpha_{J,K} dz^J \wedge d\bar{z}^K
\]
where the summation is taken over all multi-indices \(J = (j_1, \ldots, j_p)\) and \(K = (k_1, \ldots, k_p)\) such that \(1 \leq j_1 < \cdots < j_p \leq n\) and \(1 \leq k_1 < \cdots < k_p \leq n\) and \(\alpha_{J,K} = \det[\alpha_{j,k}]_{j \in J, k \in K}\).

Let \(\Omega\) be an open subset of \(\mathbb{C}^n\) and let \(\alpha = (i/2)\sum_{j,k} \alpha_{jk} dz_j \wedge d\bar{z}_k\) be a \(\mathcal{C}^1\)-form which is reducible (i.e. \([\alpha_{jk}(z)]\) is reducible for all \(z \in \Omega\)). Then \(A(z) = [\alpha_{jk}(z)]^T\) is reducible for each \(z \in \Omega\) and the above lemmas imply

Corollary 2. If \(\alpha\) is a reducible \(\mathcal{C}^1\)-form on \(\Omega\) and \(z \in \Omega\) then the nullity space of \(\alpha\) at \(z\) is a complex subspace of \(\mathbb{C}^n\). Moreover
\[
N_\Omega(\alpha) = (\text{Ran} A(z))^\perp = \text{Ker} A(z).
\]
As a consequence of Corollaries 1 and 2 and Lemma 4 we obtain

Corollary 3. Let \(\alpha\) be a \((1, 1)\)-form of class \(\mathcal{C}^1\) on an open set \(\Omega \subset \mathbb{C}^n\) such that the complex rank of \(\alpha\) is \(p\) (i.e. \(\alpha^p \neq 0, \alpha^{p+1} = 0\)). Then the mapping \(z \mapsto N_\Omega(\alpha)\) is a \(\mathcal{C}^1\)-distribution of real dimension \(2(n - p)\) if and only if \(\alpha\) is reducible.

Since \(d = \partial + \bar{\partial}\) and \(d^c = i(\bar{\partial} - \partial)\), \(dd^c\) is reducible. Let \(u\) be a complex \(\mathcal{C}^3\)-function on \(\Omega\) such that at least one of the functions \(\text{Re } u\), \(-\text{Re } u\), \(\text{Im } u\), \(-\text{Im } u\) is plurisubharmonic. Then—in view of Example 2—the form \(dd^c u\) is reducible. However it is easy to construct an example of a function \(u\) such that \(dd^c u\) is reducible and neither \(\pm \text{Re } u\) nor \(\pm \text{Im } u\) is plurisubharmonic.

Example 4. Define
\[
u(z_1, z_2, z_3) = z_1\bar{z}_2 + z_1\bar{z}_3 + (1 + i)(z_2\bar{z}_1 + z_3\bar{z}_1)
\]
for \((z_1, z_2, z_3) \in \mathbb{C}^3\). Then
\[
 dd^c u = 2i(dz_1 \wedge d\bar{z}_2 + dz_1 \wedge d\bar{z}_3 + (1 + i)dz_2 \wedge d\bar{z}_1 + (1 + i)dz_3 \wedge d\bar{z}_1)\]
and hence \(dd^c u\) is reducible. Furthermore \((dd^c u)^3 = 0\) and \((dd^c u)^2 \neq 0\). The functions \(\text{Re } u = 2\text{Re}(z_1\bar{z}_2 + z_1\bar{z}_3) - \text{Im}(z_1\bar{z}_2 + z_1\bar{z}_3)\) and \(\text{Im } u = \text{Re}(z_2\bar{z}_1 + z_3\bar{z}_1)\) are harmonic in \(\mathbb{C}^3\) but \(\text{Re } u(\lambda, \pm 0) = \pm 2|\lambda|^2\) and \(\text{Im } u(\lambda, \pm 0) = \pm |\lambda|^2\) for \(\lambda \in \mathbb{C}\).

4. Proofs of the theorems. First we shall prove Theorem 1. By virtue of Lemmas 2 and 3, \(\Delta(z) = \text{Ker} A(z) \cap \text{Ker} B(z)\) for all \(z \in \Omega\). Fix \(z \in \Omega\). To simplify the writing we omit \(z\) in \(A(z), B(z), \alpha, \beta\). Since \(\alpha\) and \(\beta\) are reducible
\[
\text{Ker } A \cap \text{Ker } B = (\text{Ran } A + \text{Ran } B)^\perp.
\]
The complex rank of α is p. In view of Lemma 1 we may make a unitary change of coordinates such that

$$\alpha = \frac{i}{2} \sum_{j,k=1}^{p} \alpha_{j,k} \, dz_j \wedge dz_k.$$

Because of Lemma 4 and the fact that $\alpha^p \wedge \beta^q \neq 0$ and $\alpha^p \wedge \beta^{q+1} = 0$, the rank of the matrix $[\beta_{jk}]_{j,k=p}$ is q. Thus the rank of the $(n \times 2n)$ matrix (A, B) is $p + q$ which means that $\text{Ran} \, A + \text{Ran} \, B$ is a $(p + q)$-dimensional complex subspace of \mathbb{C}^n. The proof of the first conclusion of Theorem 1 is complete, because z was arbitrary.

Now assume $d\alpha$ and $d\beta$ vanish on $\Delta \times \Delta \times T\Omega$. Let X, Y and Z be vector fields on Ω such that X and Y belong to Δ. Then

$$0 = d\alpha(X, Y, Z) = X\alpha(Y, Z) - Y\alpha(X, Z) + Z\alpha(X, Y)$$

$$-\alpha([X, Y], Z) - \alpha(Y, [X, Z]) + \alpha(X, [Y, Z]),$$

and the same holds for β. Therefore

$$\alpha([X, Y], Z) = \beta([X, Y], Z) = 0.$$

Consequently $[X, Y]$ belongs to Δ and Δ is involutive. By the Frobenius Integrability Theorem Δ is integrable i.e. there is a foliation $\mathcal{F} = \mathcal{F}(\alpha, \beta)$ of Ω by \mathbb{C}^1-submanifolds. If $M \in \mathcal{F}$ and $a \in M$ then $T_aM = \Delta(a)$ is a complex subspace of \mathbb{C}^n by the first part of the theorem. In view of the classical criterion of Levi-Civita this shows that M is a complex submanifold of Ω.

To prove the second theorem construct $\mathcal{F}(\alpha, \beta)$ for $\alpha = dd^c u$ an $\beta = dd^c v$. Let M be a leaf of $\mathcal{F}(\alpha, \beta)$. Then M is a complex submanifold of Ω and hence the operators ∂_M and $\overline{\partial}_M$ are intrinsically defined on M. Moreover if $a \in M$, $T_aM = N_a(dd^c u) \cap N_a(dd^c v)$. If $I: M \to \Omega$ denotes inclusion then

$$\partial_M \overline{\partial}_M (u|M) = \partial_M \overline{\partial}_M (I^*u) = I^* \partial \overline{\partial} u = 0.$$

Similarly $\partial_M \overline{\partial}_M (v|M) = 0$. Therefore both $u|M$ and $v|M$ are pluriharmonic on M.

Fix $a \in M$. Let (ϕ, U) be a coordinate system on M such that $a \in U$ and $\phi(a) = 0$. Set $\psi = (\psi_1, \ldots, \psi_n) = \phi^{-1}$. Then

$$T_aM = \partial_0 \psi(\mathbb{C}^{n-p-q}) \subset \text{Ker} \left[\partial^2 u(a)/\partial z_j \partial \bar{z}_k \right]|_\mathbb{C}^{n-p-q}$$

$$= \text{Ker} \left[\partial^2 u(a)/\partial z_j \partial \bar{z}_k \right].$$

Therefore

$$\frac{\partial}{\partial \phi_i} \left(\frac{\partial u}{\partial z_j} \right)(a) = \sum_{k=1}^{n} \frac{\partial^2 u(a)}{\partial z_j \partial \bar{z}_k} \frac{\partial \psi_k}{\partial w_i}(0) = 0$$

for $i \in \{1, \ldots, n - p - q \}$ and $j \in \{1, \ldots, n \}$. Thus the restrictions of $\partial u/\partial z_1, \ldots, \partial u/\partial z_n$ to M are holomorphic on M. The same holds when u is replaced by v.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Now we shall prove Theorem 3. Set
\[
\alpha = \frac{i}{2} \partial \overline{\partial} u = \frac{i}{2} \sum \frac{\partial u}{\partial z_j} \frac{\partial u}{\partial \overline{z}_k} \, dz_j \wedge d\overline{z}_k
\]
and
\[
\beta = \frac{i}{2} \partial \overline{\partial} u = \frac{1}{4} dd^c u.
\]
Then
\[
A_z = \left[\frac{\partial u}{\partial z_j}(z), \frac{\partial u}{\partial \overline{z}_k}(z) \right]
\]
is the matrix of the mapping, \(C^n \ni w \to (w, a_z) \in C^n \) where
\[
a_z = \left(\frac{\partial u}{\partial z_1}(z), \ldots, \frac{\partial u}{\partial z_n}(z) \right).
\]
Hence the rank of \(A \) is one and \(A \) is Hermitian. Furthermore
\[
d\alpha = -\frac{1}{2} \text{Re}(\partial \overline{u} \wedge dd^c u)
\]
so we can apply Theorem 1 to get a foliation \(\mathcal{F} \) of \(\Omega \) of complex codimension \(p + 1 \).

Let \(M \) be a leaf of \(M \) and let \(I : M \to \Omega \) denotes inclusion. Then \(\partial_M u = 0 \) because
\[
0 = I^*(\partial \overline{u} \wedge \partial u) = (\overline{\partial_M u}) \wedge \overline{\partial_M u}.
\]
The following example shows that the rank of the Hessian matrix of the function \(v \) in Theorem 2 may vary.

Example 5. Define \(v(z_1, z_2, z_3) = |z_1 + z_3|^4 + |z_2|^4 \). The function \(v \) is plurisubharmonic and \((dd^c v)^3 = 0 \) in \(C^3 \). The rank of the form \(dd^c v \) is 2 on the set \(\{(z_1, z_2, z_3) : z_2(z_1 + z_3) \neq 0\} \). The rank drops to 1 when \(z_2(z_1 + z_3) = 0 \) and \(z_2 \neq z_1 + z_3 \) and to 0 when \(z_2 = z_1 + z_3 = 0 \). Put \(u(z_1, z_2, z_3) = |z_1 + z_3|^2 + |z_2|^2 \). The functions \(u \) and \(v \) satisfy the assumptions of Theorem 2 with \(p = 2 \) and \(q = 0 \). Thus there is a complex one-dimensional foliation of \(C^3 \) along the leaves of which \(v \) is harmonic and the derivatives \(\partial v/\partial z_j \) are holomorphic. One can say that \(dd^c u \) which has a constant rank removes singularities coming from a drop in the rank of the Hessian of \(v \).

References

Department of Mathematics, University of Dublin, Trinity College, Dublin 2, Ireland

Current address: Department of Mathematics, University College, Belfield, Dublin 4, Ireland