\textbf{\omega\text{-}CONNECTED CONTINUA AND JONES' K FUNCTION}

ELDON J. VOUGHT

\textbf{Abstract.} A continuum X is $\omega\text{-}connected$ if for every pair of points x, y of X, there exists an irreducible subcontinuum of X from x to y that is decomposable. If $A \subset X$ then $K(A)$ is the intersection of all subcontinua of X that contain A in their interiors. The main theorem shows that if X is an $\omega\text{-}connected$ continuum and H is a connected nowhere dense subset of X, then $K(H)$ has a void interior. Several corollaries are established for continua with certain separation properties and a final theorem shows the equivalence of $\omega\text{-}connectedness$ and $\delta\text{-}connectedness$ for plane continua.

Let X be a compact connected metric space (continuum). If for every pair of distinct points x, y of X there exists a subcontinuum I of X irreducible between x and y such that: (1) I is decomposable, then X is $\omega\text{-}connected$ [3]; (2) I contains no indecomposable subcontinuum with nonvoid interior relative to I, then X is $\lambda\text{-}connected$ [7]; (3) I is hereditarily decomposable, then I is $\delta\text{-}connected$ [7]; (4) I is an arc, then I is $\alpha\text{-}connected$ (arcwise connected). The first three properties are generalizations of arcwise connectedness and it is clear that $\alpha\text{-}connectedness$ implies $\delta\text{-}connectedness$ which implies $\lambda\text{-}connectedness$ which implies $\omega\text{-}connectedness$. Also if $A \subset X$ let $K(A)$ be the intersection of all subcontinua of X that contain A in their interiors relative to X. This concept was introduced by F. B. Jones in [9, Theorem 2]. There the K function is restricted to points (rather than subsets).

In [10] H. E. Schlais proves the following:

\textbf{Theorem.} If X is a hereditarily decomposable continuum, then for every point x of X, the interior of $K(x)$ relative to X is void.

C. L. Hagopian [4, Theorem 4] generalized this result in two ways in the following:

\textbf{Theorem.} If X is a $\delta\text{-}connected$ continuum, then for any connected nowhere dense subset H of X, the interior of $K(H)$ relative to X is void.

Hagopian then raised the question as to whether his theorem was true for $\lambda\text{-}connected$ continua [6]. The main theorem of this paper is to answer that question in the affirmative by proving that the theorem is true, in fact, for $\omega\text{-}connected$...
continua. As consequences of this theorem, several results concerning monotone, upper-semicontinuous decompositions for continua with certain separation properties are established. Hagopian has also shown [5, Theorem 2] the equivalence of \(\delta \)-connectedness and \(\lambda \)-connectedness for plane continua. A short proof is given at the close of this paper showing that in fact \(\omega \)-connectedness, \(\lambda \)-connectedness and \(\delta \)-connectedness are all equivalent for plane continua.

Theorem 1. If \(X \) is an \(\omega \)-connected continuum, then for each connected nowhere dense subset \(H \) of \(X \), the interior of \(K(H) \) relative to \(X \) is void.

Proof. Let \(H \) be a connected nowhere dense subset of \(X \) and assume that \(K(H) \) has a nonvoid interior relative to \(X \). Let \(W \) be a nonvoid open subset of \(X \) whose closure is contained in the interior of \(K(H) \). Define \(T \) to be the component of \(X \setminus W \) that contains \(H \) and let \(K = T \cap \text{Bd}(W) \). There exist open sets \(U_0, C_0 \) such that \(\text{diam}(U_0) < 1, K \subset C_0 \subset \text{Cl}(C_0) \subset \text{Int}(K(H) \setminus H), \text{dist}(x, K) < 1 \) for all \(x \in C_0, \text{Cl}(U_0) \subset W \) and \(\text{Cl}(U_0) \cap \text{Cl}(C_0) = \emptyset \).

Observe that the component \(P \) of \(X \setminus U_0 \) that contains \(H \) (and hence contains \(T \)) cannot contain \(C_0 \). To see this, suppose \(C_0 \subset P \). Since \(H \subset \text{Int}(P) \) (for otherwise \(U_0 \subset K(H) \)), there exists a sequence of points \(x_1, x_2, \ldots \) in \(X \setminus (P \cup U_0) \) converging to a point of \(H \). For each positive integer \(i \), define \(S_i \) to be the \(x_i \)-component of \(X \setminus U_0 \). Then \(S = \text{lim sup} S_i \) is a continuum in \(X \setminus U_0 \) that intersects both \(H \) and \(\text{Cl}(U_0) \). Since \(C_0 \subset P \), for each positive integer \(i \), \(S_i \cap C_0 \neq \emptyset \), hence \(S \cap C_0 = \emptyset \). But \(K \subset C_0 \) and \(S \subset T = \emptyset \) so \(S \cap W = \emptyset \). This means that \(S \subset T \) and hence that \(T \cap \text{Cl}(U_0) \neq \emptyset \) since \(S \cap \text{Cl}(U_0) \neq \emptyset \). This is a contradiction since \(T \subset X \setminus W \) and \(\text{Cl}(U_0) \subset W \). Therefore \(C_0 \) is not a subset of \(P \).

Thus we have \(X \setminus U_0 = L_0 \cup R_0 \), a separation, such that \(K \subset P \subset L_0 \) and \(R_0 \cap C_0 \neq \emptyset \). Define \(V_0, C_1 \) to be open sets such that \(\text{diam}(V_0) < 1, K \subset C_1 \subset \text{Cl}(C_1) \subset L_0 \cap C_0 \) and \(\text{Cl}(V_0) \subset R_0 \cap C_0 \). Now replace \(U_0 \) and \(C_0 \) by \(V_0 \) and \(C_1 \), respectively, and follow the argument of the last paragraph word for word down to the final two sentences. This gives a contradiction since \(T \subset L_0 \cap (X \setminus W) \) and \(\text{Cl}(V_0) \subset R_0 \). Therefore \(C_1 \) is not a subset of \(P \), the component of \(X \setminus V_0 \) that contains \(H \). Therefore \(X \setminus V_0 = L_1 \cup R_1 \), a separation, such that \(K \subset L_1 \cap C_1 \) and \(R_1 \cap C_1 \neq \emptyset \). Note that \(L_1 \cap U_0 \neq \emptyset \) and \(R_1 \cap U_0 \neq \emptyset \).

We proceed by induction. Assume that open sets \(U_i, V_i, C_{2i}, C_{2i+1} \) of \(X \) have been defined for \(0 \leq i \leq n - 1 \) such that

1. \(\text{diam}(U_i) < 1/2^i, \text{diam}(V_i) < 1/2^i \);
2. \(X \setminus U_i = L_{2i} \cup R_{2i}, \) a separation;
3. \(K \subset C_{2i+1} \subset \text{Cl}(C_{2i+1}) \subset L_{2i} \cap C_{2i}, \text{Cl}(V_i) \subset R_{2i} \cap C_{2i}, \text{dist}(x, K) < 1/2^i \) for all \(x \in C_{2i} \);
4. \(X \setminus V_i = L_{2i+1} \cup R_{2i+1}, \) a separation;
5. \(K \subset L_{2i+1} \cap C_{2i+1}, R_{2i+1} \cap C_{2i+1} \neq \emptyset ; \) and
6. \(\text{Cl}(U_{i+1}) \subset U_i \cap R_{2i+1} \) for \(i < n - 1 \).

Let \(C_{2n} \) be an open set such that \(K \subset C_{2n} \subset \text{Cl}(C_{2n}) \subset L_{2n-1} \cap C_{2n-1} \) and \(\text{dist}(x, K) < 1/2^n \) for all \(x \in C_{2n} \). By (2)--(5), \(R_{2n-1} \cap U_{n-1} \neq \emptyset \), so let \(U_n \) be an open set such that \(\text{Cl}(U_n) \subset R_{2n-1} \cap U_{n-1} \) and \(\text{diam} U_n < 1/2^n \). Our previous
argument yields the fact that $X \setminus U_n = L_{2n} \cup R_{2n}$, a separation, such that $K \subset L_{2n} \cap C_{2n}$ and $R_{2n} \cap C_{2n} \neq \emptyset$. Define V_n, C_{2n+1} to be open sets such that $K \subset C_{2n+1} \subset \text{Cl}(C_{2n+1}) \subset L_{2n} \cap C_{2n}$ and $\text{Cl}(V_n) \subset R_{2n} \cap C_{2n}$. As before we have $X \setminus V_n = L_{2n+1} \cup R_{2n+1}$, a separation, such that $K \subset L_{2n+1} \cap C_{2n+1}$ and $R_{2n+1} \cap C_{2n+1} \neq \emptyset$.

Let $\{x\} = \bigcap U_i$ and (taking subsequences if necessary) let $y = \lim V_i$. Note that $y \notin K$ since $K = \bigcap C_i$ and $V_i \subset C_{2i}$ for $i = 0, 1, \ldots$. By hypothesis there exists an irreducible subcontinuum I of X from x to y that is decomposable. Set $I = I_x \cup I_y$, where I_x and I_y are continua such that $x \in I_x \setminus I_y$, $y \in I_y \setminus I_x$. Let k be an integer such that $U_k \cap I_y = \emptyset$ and $V_k \cap I_x = \emptyset$. Then $I_x \subset R_{2k+1}$ since $x \in R_{2k+1}$. Also $I_y \subset L_{2k}$ since $y \in K$ and $K \subset \bigcap L_i$. Then since $I_y \subset L_{2k}$, $V_k \subset R_{2k}$ and $y \in L_{2k+1}$, it follows that $I_y \subset L_{2k+1}$. So we have $I = I_x \cup I_y \subset L_{2k+1} \cup R_{2k+1}$, a separation, with $x \in R_{2k+1}$ and $y \in L_{2k+1}$. This is a contradiction, so the assumption that $K(H)$ has a nonvoid interior is false. This completes the proof of the theorem.

A θ_n-continuum (θ-continuum) is a continuum such that every subcontinuum separates it into at most n components (a finite number of components). The following theorem has been established for θ_n-continua in [2, Theorem 2] and for θ-continua in [1, Theorem 2].

Theorem. Let X be a θ_n-continuum or a θ-continuum. Then X admits a monotone, upper-semicontinuous decomposition, the elements of which have void interiors, and which is unique and minimal with respect to the property that the quotient space is a finite graph if and only if whenever H is a nowhere dense subcontinuum of X, it follows that $K(H)$ is nowhere dense.

As a consequence of this theorem and Theorem 1, the next result follows immediately.

Theorem 2. Let X be a θ_n-continuum or a θ-continuum and let X be ω-connected. Then X admits a monotone, upper-semicontinuous decomposition, the elements of which have void interiors and which is unique and minimal with respect to the property that the quotient space is a finite graph.

Specifically for θ_1-continua (continua for which the complement of every subcontinuum is connected), Theorem 3 provides a generalization of Hagopian’s decomposition theorem for δ-connected θ_1-continua [4, Theorem 5].

Theorem 3. Let X be an ω-connected θ_1-continuum. Then X admits a monotone, upper-semicontinuous decomposition, the elements of which have void interiors and which is unique and minimal with respect to the property that the quotient space is a simple closed curve.

The equivalence of δ-connectedness and ω-connectedness for plane continua is observed as a final result. The proof consists of combining the following two theorems.

Theorem (Hagopian [4, Theorem 2]). A plane continuum is δ-connected if and only if it cannot be mapped continuously onto D, the Knaster plane indecomposable continuum with one endpoint.
Theorem (Krasinkiewicz and Minc [8, Theorem 10]). Let \(X \) be a plane continuum which can be mapped continuously onto an indecomposable continuum. Then there exist two points \(x, y \in X \) such that \(X \) contains exactly one subcontinuum that is irreducible between \(x \) and \(y \) and this subcontinuum is indecomposable.

Theorem 4. If \(X \) is an \(\omega \)-connected plane continuum then \(X \) is \(\delta \)-connected.

Proof. Suppose \(X \) is not \(\delta \)-connected. According to Hagopian’s theorem \(X \) can be mapped continuously onto the Knaster indecomposable continuum \(D \). Then by the theorem of Krasinkiewicz and Minc, there are two points \(x, y \in X \) such that there is only one subcontinuum that is irreducible between \(x \) and \(y \) and it is indecomposable. But this is a contradiction to the \(\omega \)-connectedness of \(X \). Hence \(X \) is \(\delta \)-connected.

References

Department of Mathematics, Chico State University, Chico, California 95929 (Current address)

Department of Mathematics, California State University, Sacramento, California 95819