On cohomology automorphisms of complex flag manifolds
HTML articles powered by AMS MathViewer
- by Michael Hoffman and William Homer
- Proc. Amer. Math. Soc. 91 (1984), 643-648
- DOI: https://doi.org/10.1090/S0002-9939-1984-0746106-X
- PDF | Request permission
Abstract:
We conjecture a classification of the automorphisms of the rational cohomology ring of $U\left ( n \right )/H$ for $H$ a closed connected subgroup of maximal rank in $U\left ( n \right )$, and prove a partial result.References
- Armand Borel, Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts, Ann. of Math. (2) 57 (1953), 115–207 (French). MR 51508, DOI 10.2307/1969728
- Stephen Brewster and William Homer, Rational automorphisms of Grassmann manifolds, Proc. Amer. Math. Soc. 88 (1983), no. 1, 181–183. MR 691305, DOI 10.1090/S0002-9939-1983-0691305-8
- S. Allen Broughton, Michael Hoffman, and William Homer, The height of two-dimensional cohomology classes of complex flag manifolds, Canad. Math. Bull. 26 (1983), no. 4, 498–502. MR 716592, DOI 10.4153/CMB-1983-080-3
- Henry H. Glover and William D. Homer, Self-maps of flag manifolds, Trans. Amer. Math. Soc. 267 (1981), no. 2, 423–434. MR 626481, DOI 10.1090/S0002-9947-1981-0626481-9
- Henry H. Glover and Guido Mislin, On the genus of generalized flag manifolds, Enseign. Math. (2) 27 (1981), no. 3-4, 211–219 (1982). MR 659149
- Michael Hoffman, Endomorphisms of the cohomology of complex Grassmannians, Trans. Amer. Math. Soc. 281 (1984), no. 2, 745–760. MR 722772, DOI 10.1090/S0002-9947-1984-0722772-4
Bibliographic Information
- © Copyright 1984 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 91 (1984), 643-648
- MSC: Primary 57T15; Secondary 55S37
- DOI: https://doi.org/10.1090/S0002-9939-1984-0746106-X
- MathSciNet review: 746106