NECESSARY CONDITIONS FOR STABILITY
OF NONSINGULAR ENDOMORPHISMS OF THE CIRCLE
CARLOS ARTEAGA

ABSTRACT. In this article we prove that Axiom A is a necessary condition for structural stability of C^1 nonsingular endomorphisms of the circle.

1. Introduction. We say that an endomorphism $f: S^1 \to S^1$ of the circle is nonsingular if df is injective at each point of S^1. Let $N(S^1)$ be the space of C^1 nonsingular endomorphisms of S^1 endowed with the C^1 topology. f in $N(S^1)$ is said to be structurally stable if it has a neighborhood U such that any $g \in U$ is topologically conjugate to f; i.e., there exists a homeomorphism $h: S^1 \to S^1$ satisfying $hf = gh$. In [4] Z. Nitecki proves that Axiom A is a sufficient condition for a nonsingular endomorphism of S^1 to be structurally stable. Recall that $f \in N(S^1)$ satisfies Axiom A if

(a) $\text{Per}(f) = \Omega(f)$. Here $\text{Per}(f)$ denotes the set of all periodic points of f and $\Omega(f)$ the set of nonwandering points of f, i.e., $x \in \Omega(f)$ if and only if for any neighborhood U of x there is an integer $n > 0$ such that $f^n(U) \cap U \neq \emptyset$.

(b) $\Omega(f)$ has a hyperbolic structure, i.e., $\Omega(f)$ decomposes into a disjoint union of two closed, invariant subsets $\Omega(f) = \Omega_c \cup \Omega_e$ such that there exist $k > 0$, $0 < \lambda < 1$, satisfying

$$|df^n(x)| \leq k\lambda^n \quad \text{for all } x \in \Omega_c,$$

and

$$|df^n(x)| \geq k\lambda^{-n} \quad \text{for all } x \in \Omega_e.$$

The purpose of this paper is to prove that the condition above is necessary for structural stability.

THEOREM. If $f \in N(S^1)$ is structurally stable then f satisfies Axiom A.

A fundamental tool for the proof of the theorem will be a lemma (Lemma 3.1) essentially contained in the proof of a theorem of Jakobson [2, Theorem A].

The author thanks R. Mañe for helpful discussions about this paper.

2. Preliminaries. Let $f \in N(S^1)$. A periodic point x of periodic n is called hyperbolic, contracting or expanding according as $|df^n(x)| \neq 1, < 1$ or > 1, respectively. Let $\Omega_c(f)$ denote the set of contracting periodic points of f. The set $\Omega_e(f) = \Omega(f) - \Omega_c(f)$ will be denoted by $\Omega_e(f)$.

Let $x \in \Omega_e(f)$. The stable manifold of x, $W^s(x)$, is defined by $W^s(x) = \{y : x \in \omega(y)\}$. Here $\omega(y)$ denotes the ω-limit set of the orbit $\{f^n(y)\}$. In general, $W^s(x)$ consists of countably many disjoint intervals. The interval containing x will be called the local stable manifold and is denoted by $W^s_f(x)$. The stable manifold of f,
\(\Delta(f) \), is defined by \(\Delta(f) = \bigcup W^s(x) \), where the union is taken over all contracting periodic points \(x \) of \(f \). We let \(\Sigma(f) = S^1 - \Delta(f) \).

A point \(x \) is eventually periodic if some iterate of \(x \) is a periodic point of \(f \). A point \(x \) is called recurrent if \(x \in \omega(x) \).

3. Proof of the theorem. We start establishing some preliminary results.

The following lemma is a consequence of Theorem 3 and the Remark to Theorem 3 of [2].

Lemma 3.1. Let \(f \) be a \(C^2 \) nonsingular endomorphism of \(S^1 \) satisfying:

(i) All periodic points are hyperbolic;
(ii) \(f \) has a finite number (nonzero) of contracting periodic points.

Then \(\Sigma(f) \) is totally disconnected, and \(f|_{\Sigma(f)} \) and \(f|_{\Omega_\epsilon(f)} \) are topologically conjugate to subsemishifts of finite type.

Using this result it is possible to prove the following lemmas.

Lemma 3.2. Let \(f \in N(S^1) \) be structurally stable of degree \(> 1 \), and let \(\epsilon > 0 \).
If \(p \in \Omega_\epsilon(f) \) is a recurrent point of \(f \), then there exists \(q \in \text{Per}(f) \) such that
\[|f^j(p) - f^j(q)| < \epsilon \text{ for all } 0 \leq j < m, \]
where \(m \) is the period of \(p \).

Proof. We divide the proof of the lemma in two cases.

1. \(\Omega_\epsilon(f) \neq 0 \). By hypothesis \(f \) has all periodic points hyperbolic.
 Choose a \(C^2 \) nonsingular endomorphism \(f_1 \) sufficiently close to \(f \) in the \(C^1 \) topology. By hypothesis \(f_1 \) and \(f \) are topologically conjugate. It follows from this that \(f_1 \) has all periodic points hyperbolic and \(\Omega_\epsilon(f_1) \neq 0 \), because \(f \) has these properties and a conjugacy preserves hyperbolic periodic points and nonwandering points. By Szlenk’s Lemma [2, Lemma 4], \(f_1 \) can be approximated in the \(C^1 \) topology by a \(C^2 \) nonsingular endomorphism \(f_2 \) satisfying the hypothesis of Lemma 3.1. Hence, \(f_2|_{\Omega_\epsilon(f_2)} \) is topologically conjugate to a subsemishift of finite type, and since \(f_2 \) and \(f \) are topologically conjugate, \(f|_{\Omega_\epsilon(f)} \) is also topologically conjugate to a subsemishift of finite type. Therefore, there is a periodic point \(q \in \Omega_\epsilon(f) \) such that
\[|f^j(p) - f^j(q)| < \epsilon \text{ for all } 0 \leq j < m, \]
where \(m \) is the period of \(q \).

2. \(\Omega_\epsilon(f) = 0 \). By [2, Lemma 5], \(\Omega(f) = S^1 \). Hence by [5, Lemma 3.1], \(f \) is topologically conjugate to the expanding map \(\delta_d: S^1 \to S^1 \) defined by \(\delta_d(z) = zd \), where \(d = \deg f \). Then the lemma follows from the fact that \(\delta_d \) satisfies the property of the lemma and the uniform continuity of the conjugation.

Lemma 3.3. Let \(f \in N(S^1) \) be structurally stable of degree \(> 1 \). If \(p \in \Omega_\epsilon(f) \) is a recurrent point of \(f \) then there exists \(n \in N \) such that \(|df^n(p)| > 1 \).

Proof. By the proof of Lemma 3.2, \(\Omega_\epsilon(f) \) is finite.
Choose 0 < \(\epsilon < 1 \) and a compact neighborhood \(U_\epsilon \) of \(\Omega_\epsilon(f) \) such that if \(g \) is \(\epsilon \) close to \(f \) in the \(C^1 \) metric then \(g \) is topologically conjugate to \(f \) and \(\Omega_\epsilon(g) \subset U_\epsilon \).
By Lemma 3.2 and the fact that \(df \) is uniformly continuous, there exists a periodic point \(q \in \Omega_\epsilon(f) \) such that
\[|df^l(p) - df^l(q)| < \epsilon/3 \text{ for all } 0 \leq l < n, \]
where \(n \) is the period of \(q \).

Now, to prove the lemma we shall adapt techniques due to Franks [1] and Mañe [3]. Choose a number \(\delta, 0 < \delta < \epsilon/3 \), such that if \(I_i = \{ x \in S^1 | |x - f^i(q)| < \delta \} \) then \(I_i \cap U_\epsilon = \emptyset \) for all 0 < \(l < n \), and \(I_i \) and \(I_j \) are disjoint when \(i \neq j \).
For every \(l = 0, \ldots, n - 1 \), choose a \(C^\infty \) real valued function \(\sigma_l \) such that \(0 \leq \sigma_l(x) \leq 1 \), \(\sigma_l(x) = 0 \) if \(x \in S^1 - I_l \), \(\sigma_l(x) = 1 \) if \(|x - f^l(q)| \leq \delta/4 \) and \(|\sigma'_l(x)| < 2/\delta \) for all \(x \). Let \(g \in N(S^1) \) be defined by

\[
g(x) = f(x) + \sum_{i=0}^{n-1} \sigma_i(x)\tau_i(x - f^i(q)),
\]

where \(\tau_i = df(f^i(p)) - df(f^i(q)) \).

It is easy to see that \(g(f^l(q)) = f(f^l(q)) \) for all \(0 \leq l \leq n \), and \(g \) is \(\epsilon \) close to \(f \) in the \(C^1 \) metric, and therefore all periodic points of \(g \) are hyperbolic and \(\Omega_c(g) \subseteq U_c \).

These properties imply that \(g^n(q) = q \) and \(q \) is expanding.

Moreover,

\[
dg(f^l(q)) = df(f^l(q)) + \sum_{i=0}^{n-1} [\sigma'_i(f^l(q))\tau_i(f^l(q) - f^i(q)) + \sigma_i(f^l(q))\tau_i]
\]

\[
= df(f^l(q)) + \tau_l = df(f^l(p)).
\]

Hence,

\[
dg^n(q) = \prod_{i=0}^{n-1} dg(f^i(q)) = \prod_{i=0}^{n-1} df(f^i(q))
\]

\[
= \prod_{i=0}^{n-1} df(f^i(p)) = df^n(p).
\]

Therefore, \(|df^n(p)| > 1 \) and the lemma is proved.

Now we shall prove the theorem by adapting a technique due to Mañé [3]. Let \(f \in N(S^1) \) be structurally stable. If degree \(f = 1 \) the theorem follows from Peixoto's theorem [6]; so we assume degree \(f > 1 \). By [5, Corollary 2.4], \(\Omega(f) = \text{Per}(f) \) and, by the proof of Lemma 3.2, \(\Omega_c(f) \) is finite. Hence to show that \(f \) satisfies Axiom A, it is sufficient to show that \(f|_{\Omega_c(f)} \) is expanding, i.e., there exist \(k > 0 \) and \(\lambda > 1 \) such that \(|df^n(x)| > k\lambda^n \).

By compactness and \(f \)-invariance of \(\Omega_c(f) \), this property is equivalent to showing that there exist \(n \in \mathbb{N} \) and \(c > 1 \) such that \(|df^n(x)| > c \) for all \(x \in \Omega_c(f) \). By using the compactness of \(\Omega_c(f) \) and the chain rule, it is easy to prove that this is equivalent to the fact that for every \(x \in \Omega_c(f) \) there exists \(n = n(x) \) such that \(|df^n(x)| > 1 \). Hence, everything is reduced to proving this condition.

By contradiction, suppose there exists \(x \in \Omega_c \) such that \(|df^n(x)| \leq 1 \) for all \(n \in \mathbb{N} \). Then \(f|_{\omega(x)} \) is not expanding because \(\omega(x) \) is compact. Let \(S \) be the family of compact \(f \)-invariant subsets \(\Sigma \) of \(\omega(x) \) such that \(f|_{\Sigma} \) is not expanding. It is easy to see that if \(\{ \Sigma_\alpha \mid \alpha \in \mathcal{A} \} \subseteq S \) satisfies \(\Sigma'_\alpha \subseteq \Sigma''_\alpha \) or \(\Sigma''_\alpha \subseteq \Sigma'_\alpha \) for all \(\alpha', \alpha'' \in \mathcal{A} \) then \(\bigcap \Sigma_\alpha \subseteq S \). Hence by Zorn's lemma there exists \(\Sigma \in S \) such that \(\Sigma' \subseteq S \) and \(\Sigma' \subseteq \Sigma \) imply \(\Sigma' = \Sigma \). Since \(f|_{\Sigma} \) is not expanding there exists \(y \in \Sigma \) such that \(|df^n(y)| \leq 1 \) for all \(n \in \mathbb{N} \). Then \(\omega(y) \in S \) which, together with the fact that \(\omega(y) \subseteq \Sigma \), implies that \(\omega(y) = \Sigma \). It follows that \(y \) is a recurrent point of \(f \). But by Lemma 3.3, \(y \) is not a recurrent point. This contradiction proves the theorem.
REFERENCES

DEPARTAMENTO DE MATEMÁTICA, UNIVERSIDADE FEDERAL DE SÃO CARLOS, CEP: 13560, SÃO CARLOS-SP, BRASIL

Current address: Mathematics Institute, University of Warwick, Coventry CV47AL, United Kingdom