A chaotic function possessing a scrambled set with positive Lebesgue measure
HTML articles powered by AMS MathViewer
- by I. Kan
- Proc. Amer. Math. Soc. 92 (1984), 45-49
- DOI: https://doi.org/10.1090/S0002-9939-1984-0749887-4
- PDF | Request permission
Abstract:
A continuous function, chaotic in the sense of Li and Yorke, is constructed which possesses a scrambled set of positive Lebesgue measure.References
- T. Y. Li and James A. Yorke, Period three implies chaos, Amer. Math. Monthly 82 (1975), no. 10, 985–992. MR 385028, DOI 10.2307/2318254
- J. Smítal, A chaotic function with some extremal properties, Proc. Amer. Math. Soc. 87 (1983), no. 1, 54–56. MR 677230, DOI 10.1090/S0002-9939-1983-0677230-7
- Motosige Osikawa and Yoshitsugu Oono, Chaos in $C^{0}$-endomorphism of interval, Publ. Res. Inst. Math. Sci. 17 (1981), no. 1, 165–177. MR 613940, DOI 10.2977/prims/1195186710
- Bernard R. Gelbaum and John M. H. Olmsted, Counterexamples in analysis, The Mathesis Series, Holden-Day, Inc., San Francisco, Calif.-London-Amsterdam, 1964. MR 0169961
- Jean-Pierre Kahane and Raphaël Salem, Ensembles parfaits et séries trigonométriques, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1301, Hermann, Paris, 1963 (French). MR 0160065
- John B. Conway, Functions of one complex variable, 2nd ed., Graduate Texts in Mathematics, vol. 11, Springer-Verlag, New York-Berlin, 1978. MR 503901
Bibliographic Information
- © Copyright 1984 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 92 (1984), 45-49
- MSC: Primary 26A30; Secondary 58F13
- DOI: https://doi.org/10.1090/S0002-9939-1984-0749887-4
- MathSciNet review: 749887