ABSTRACT. It is shown that every \(\sigma \)-additive \(\sigma \)-finite invariant measure on an abelian group has a proper \(\sigma \)-additive invariant extension.

We consider \(\sigma \)-finite countably additive measures which vanish on points and are nonidentically zero. Throughout this paper the word "measure" will mean a measure enjoying all the above properties. A measure \(m \) defined on a \(\sigma \)-algebra \(S \) of subsets of \(X \) is called invariant with respect to a group \(G \) of bijections of \(X \) if for any \(T \in G \) and \(A \in S \) the image \(T^*(A) \) is an element of \(S \) and \(m(T^*(A)) = m(A) \). A measure \(m \) defined on a \(\sigma \)-algebra of subsets of a group \(G \) is called invariant if it is invariant with respect to left translations.

Sierpiński (quoted in Szpilrajn [7]) asked whether there exists in Euclidean \(n \)-dimensional space \(E^n \) a maximal extension of the Lebesgue measure invariant with respect to the group of isometries of \(E^n \). Hulanicki [2] proved that if \(|X| \) is less than the first real-valued measurable cardinal, \(|G| \leq |X| \), and \(m \) is a measure on \(X \) invariant with respect to \(G \) and vanishing on sets of cardinality \(< |X| \), then there exists a proper extension of \(m \) invariant with respect to \(G \). Thus he solved Sierpiński's problem under additional set theoretic assumptions. Harazišvili [1] gave a negative answer to this question for \(n = 1 \) without any extra hypotheses. He also proved that there is no maximal measure invariant with respect to translations on any Euclidean space. In other words the group of translations of \(E^n \) does not carry maximal invariant measures. Our theorem is a generalisation of the above result.

THEOREM. Every invariant measure on an abelian group \((G, +)\) has a proper invariant extension.

PROOF. We start with the following lemma, essentially due to Szpilrajn [7]. The easy proof is left to the reader.

LEMMA. Let \(m \) be an invariant measure on \(G \). If there exists a set \(E \subset G \) such that:
1. \(E \) is not a set of \(m \) measure zero.
2. For every sequence \(\{g_n: n \in \omega\} \) of elements of \(G \), there exists a sequence \(\{h_\alpha: \alpha < \omega_1\} \) of elements of \(G \) such that for distinct \(\alpha, \beta \),
\[
m\left(h_\alpha + \bigcup_{n \in \omega} (g_n + E) \right) \cap \left(h_\beta + \bigcup_{n \in \omega} (g_n + E) \right) = \emptyset,
\]
then the measure \(m \) has a proper invariant extension.
Hence it suffices to show a set E with the above properties. Without loss of
generality we assume that m is a complete measure (i.e. subsets of measure zero
sets are measurable).

Case 1. Additive groups of linear spaces over a countable field (cf. Harazišvili [1]
and Pelc [4]). Let V be a linear space over a countable field K and m any measure
on V invariant with respect to addition. Fix a linear basis $\mathcal{B} = \{V_\alpha: \alpha < \kappa\}$ of V
over K and let V_n denote the set of those elements of V which have n summands
in the basis \mathcal{B} representation.

Hence $V = \bigcup_{n \in \omega} V_n$ and there exists the least number n_0 for which V_{n_0} does
not have measure 0. We claim that V_{n_0} also satisfies condition 2 of the lemma.

Let $\{g_n: n \in \omega\}$ be a countable sequence of elements of V and

$$D = \bigcup_{n \in \omega} (g_n + V_{n_0}).$$

As $\{h_\alpha: \alpha < \omega_1\}$ for the lemma take any subset of \mathcal{B} of cardinality ω_1 whose
elements do not appear in the \mathcal{B}-representation of $g_i - g_j$ where $(i, j) \in \omega \times \omega$.
Then $w = h_\alpha + g_i + w_1 = h_\beta + g_j + w_2$, where w_1 and w_2 are in V_{n_0}, if and only if
$g_i - g_j = h_\beta - h_\alpha + w_2 - w_1$. Since h_β and h_α are not used in the \mathcal{B}-representation
of $g_i - g_j$ and they are distinct, then either $w_1 = kh_\alpha + w'$ or $w_2 = kh_\alpha + w'$ for
some $k \in K$ and w' in V_{n_0-1}. Hence $w = k'h_\alpha + g_i + w'$ or $w = h_\beta + g_j + k'h_\alpha + w'$
for some $k' \in K$ and $w' \in V_{n_0-1}$ so that for $\alpha \neq \beta$ the set $(h_\alpha + D) \cap (h_\beta + D)$ is
a subset of a countable union of translations of V_{n_0-1}. Therefore $(h_\alpha + D) \cap (h_\beta + D)$
has m measure zero. Hence the set V_{n_0} satisfies the conditions of the lemma.

Case 2. Torsion-free abelian groups. Let G be a torsion-free abelian group.
There exists a homomorphic embedding of G into the additive group of a linear
space V over the field Q of rationals such that a certain basis $\mathcal{B} = \{v_\alpha: \alpha < \kappa\}$ of V
consists of elements of G. Let m be any invariant measure on G.

For any finite sequence $s = (q_1, \ldots, q_n)$ of nonzero rationals let V_s be the set of
elements of V of the form $q_1v_{\alpha_1} + \cdots + q_nv_{\alpha_n}$ where $\alpha_1 > \cdots > \alpha_n$ and $v_{\alpha_i} \in \mathcal{B}$.
Let $s_0 = (r_1, \ldots, r_n)$ be a sequence for which the set $E = G \cap V_{s_0}$ is not a set of
m measure 0. In order to check that E also satisfies condition 2 of the lemma,
let $\{g_n: n \in \omega\}$ be any sequence of elements in G. Take any uncountable set of
elements w_α of \mathcal{B} which do not appear in the \mathcal{B}-representation of any element g_n.
Let k be a natural number different from all r_i, $r_i - r_j$ ($i, j \leq n$) and $h_\alpha = kw_\alpha$ for
$\alpha < \omega_1$. We claim that

$$\left[h_\alpha + \bigcup_{n \in \omega} (g_n + E) \right] \cap \left[h_\beta + \bigcup_{n \in \omega} (g_n + E) \right] = \emptyset.$$

Indeed, suppose x is an element of the set on the left side. Then

$$x = kw_\alpha + g_n + r_1v_{\alpha_1} + \cdots + r_nv_{\alpha_n} = kw_\beta + g_m + r_1v_{\beta_1} + \cdots + r_nv_{\beta_n}.$$

Since $\alpha \neq \beta$ and w_α, w_β do not appear in the representation of g_n, g_m, we get that
either $k = r_i$ or $k + r_i = r_j$ for some $i, j \leq n$, contradiction.

Case 3. Arbitrary groups. Let G be an arbitrary abelian group and m an
invariant measure on G. By H denote the torsion subgroup of G. If $m(H) = 0$ we
define a measure m_1 on G/H, putting $m_1(\{a + H: a \in A\}) = m(\bigcup_{a \in A}(a + H))$.
for $A \subset G$ such that $\bigcup_{a \in A} (a + H)$ is m-measurable. The measure m_1 is clearly invariant (and vanishes on points since $m(H) = 0$). The group G/H is torsion-free and, hence, by Case 2 there exists a set $E_1 \subset G/H$ satisfying both conditions from the lemma for G/H and m_1. It is not hard to see that the set $E = \bigcup E_1$ satisfies the conditions from the lemma for G and m.

If H is not a set of m measure 0 then let H_n (for $n \geq 1$) denote the subgroup of H consisting of those elements whose orders divide n. Clearly $H = \bigcup_{n \geq 1} H_n$ and let n_0 be the least natural number for which H_{n_0} is not a set of m measure 0. We will prove the existence of a subset of H_{n_0} satisfying the conditions of our lemma by induction on the number of prime divisors of n_0 (counting multiple divisors many times). If $k = 1$ then n_0 is prime and H_{n_0} is the additive group of a linear space over the field F_{n_0}. Next we proceed as in Case 1 and show that the set constructed there is as required (for G and m).

Suppose that for n_0 having k prime divisors there exists a set $E \subset H_{n_0}$ satisfying the lemma. Now let $n_0 = p_1 \cdots p_{k+1}$ (p_i-primes, $k \geq 1$) and let H' be the subgroup of H_{n_0} consisting of elements of order p_1. Since $m(H') = 0$, we can define an invariant measure m' on G/H' just as before. H_{n_0}/H' is a subgroup of G/H' all of whose elements have orders dividing the number $p_2 \cdots p_{k+1}$. By definition H_{n_0}/H' is not a set of m' measure 0. Hence by the inductive hypothesis there exists a set $E' \subset H_{n_0}/H'$ which satisfies the conditions of the lemma for the group G/H' and measure m'. It is easy to see that set $E = \bigcup E'$ is now good for G and m, which finishes the proof in the general case.

REFERENCES

5. ———, Invariant measures and ideals on discrete groups (to appear).

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WARSAW, PL 00-901, WARSAW, POLAND

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use