Functions of well-bounded operators
HTML articles powered by AMS MathViewer
- by Harold E. Benzinger
- Proc. Amer. Math. Soc. 92 (1984), 75-80
- DOI: https://doi.org/10.1090/S0002-9939-1984-0749895-3
- PDF | Request permission
Abstract:
It is shown that if $A$ is a well-bounded operator of type (B), and if $f$ is of bounded variation and piecewise monotone, then $f(A)$ is also well bounded of type (B).References
- Harold Benzinger, Earl Berkson, and T. A. Gillespie, Spectral families of projections, semigroups, and differential operators, Trans. Amer. Math. Soc. 275 (1983), no. 2, 431–475. MR 682713, DOI 10.1090/S0002-9947-1983-0682713-4
- H. R. Dowson, Spectral theory of linear operators, London Mathematical Society Monographs, vol. 12, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London-New York, 1978. MR 511427
- J. R. Ringrose, On well-bounded operators. II, Proc. London Math. Soc. (3) 13 (1963), 613–638. MR 155185, DOI 10.1112/plms/s3-13.1.613
Bibliographic Information
- © Copyright 1984 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 92 (1984), 75-80
- MSC: Primary 47A60; Secondary 47B40
- DOI: https://doi.org/10.1090/S0002-9939-1984-0749895-3
- MathSciNet review: 749895