A SHORT PROOF OF A DECOMPOSITION THEOREM OF A VON NEUMANN ALGEBRA

M. AWAMI AND A. B. THAHEEM

Abstract. Let M be a von Neumann algebra and S and T be commuting *-automorphisms on M satisfying the equation: $S + S^{-1} = T + T^{-1}$. It is proved that M can be decomposed by a central projection p in M such that $S = T$ on Mp and $S = T^{-1}$ on $M(1 - p)$.

Recently the second author proved the following decomposition theorem.

Theorem 1 [3, Theorem 2.6]. Let S and T be commuting *-automorphisms of a von Neumann algebra M satisfying the operator equation

$$S + S^{-1} = T + T^{-1}.$$

Then M can be decomposed by a central projection p in M such that $S = T$ on Mp and $S = T^{-1}$ on $M(1 - p)$.

Some applications of this result are discussed by Haagerup and Skau in the geometrical interpretation of the Tomita-Takesaki theory (cf. [1]). A noncommutative version of Theorem 1 (in the case of automorphism groups) has been studied in [4] with its proof depending on Arveson’s theory of spectral subspaces (cf. [5]). The proof of Theorem 1 is rather long and relies on several technical lemmas. The purpose of this note is to give a short proof of this theorem. In fact, we prove a stronger form of this result (Theorem 2) and get the proof of Theorem 1 as an immediate corollary.

Theorem 2. Let S and T be *-automorphisms of a von Neumann algebra M satisfying the operator equation

(i) $$S + T^{-1}S^{-1}T = T + T^{-1}.$$

Then M can be decomposed by a central projection p in M such that $S = T$ on Mp and $S = T^{-1}$ on $M(1 - p)$.
Proof. Consider the \(\ast \)-automorphism \(S^{-1}T \) on \(M \). By [2, Theorem 2] there is a central projection \(p \) in \(M \) such that \(M(1 - p) \) is the smallest subalgebra generated by \(R(S^{-1}T - 1) \), the range of \((S^{-1}T - 1) \), and \((S^{-1}T - 1)(Mp) = 0 \). Since
\[
(T^{-1} - S)(S^{-1}T - 1) = T^{-1}S^{-1}T - T - T^{-1} + S = 0 \quad \text{(by (i))},
\]
therefore, \((T^{-1} - S)(M(1 - p)) = 0 \). This completes the proof of the theorem.

Corollary. If \(S \) and \(T \) commute then we get the proof of Theorem 1.

References

Department of Mathematics, Faculty of Science, Garyounis University, P. O. Box 9480, Benghazi, Libya