Borel measurable images of Polish spaces
HTML articles powered by AMS MathViewer
- by Sandro Levi and Ashok Maitra
- Proc. Amer. Math. Soc. 92 (1984), 98-102
- DOI: https://doi.org/10.1090/S0002-9939-1984-0749900-4
- PDF | Request permission
Abstract:
We determine the Borel class of the image of a Polish space under a Borel measurable function of class $\eta$ which maps open sets in the Polish space to Borel sets of additive class $\xi$ in the range, under a mild restriction on the inverse images of singleton sets. Our computation is based on a selection theorem proved in this article.References
- J. P. Burgess, Careful choices: A last word on selectors, preprint, 1979.
F. Hausdorff, Über innere Abbildungen, Fund. Math. 23 (1934), 279-291.
L. Keldysh, On open images of $A$-sets, Dokl. Akad. Nauk SSSR 49 (1945), 646.
- K. Kuratowski, Topology. Vol. I, Academic Press, New York-London; Państwowe Wydawnictwo Naukowe [Polish Scientific Publishers], Warsaw, 1966. New edition, revised and augmented; Translated from the French by J. Jaworowski. MR 0217751
- Sandro Levi, On the classification of functions in separable metric spaces, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. (8) 69 (1980), no. 6, 308–312 (1982) (English, with Italian summary). MR 690296
- Ashok Maitra, Selectors for Borel sets with large sections, Proc. Amer. Math. Soc. 89 (1983), no. 4, 705–708. MR 719000, DOI 10.1090/S0002-9939-1983-0719000-7
- Douglas E. Miller, Borel selectors for separated quotients, Pacific J. Math. 91 (1980), no. 1, 187–198. MR 612898
- S. M. Srivastava, Selection theorems for $G_{\delta }$-valued multifunctions, Trans. Amer. Math. Soc. 254 (1979), 283–293. MR 539919, DOI 10.1090/S0002-9947-1979-0539919-3
- Robert Vaught, Invariant sets in topology and logic, Fund. Math. 82 (1974/75), 269–294. MR 363912, DOI 10.4064/fm-82-3-269-294
Bibliographic Information
- © Copyright 1984 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 92 (1984), 98-102
- MSC: Primary 54H05; Secondary 28A20, 54C65
- DOI: https://doi.org/10.1090/S0002-9939-1984-0749900-4
- MathSciNet review: 749900