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CHARACTERIZING THE TOPOLOGY OF
INFINITE-DIMENSIONAL ct-COMPACT MANIFOLDS

JERZY MOGILSKI

ABSTRACT. A metric space (X, d), which is a countable union of finite-

dimensional compacta, is a manifold modelled on the space 1'2 — {(x,) 6

h: all but finitely many z¿ = 0} iff X is an ANR and the following condition

holds: given e > 0, a pair of finite-dimensional compacta (A, B) and a map

/: A —* X such that f\B is an embedding, there is an embedding j:i-»X such

that g\B — f\B and d(f(x),g(x)) < e for all x 6 A. An analogous condition

characterizes manifolds modelled on the space E = {(i¿) G h: Hi^ií*1^)2 <

«,}.

1. Introduction. In this note we will deal with the manifolds modelled on the

following pre-Hilbert spaces:

l2 = {(xí) E l2: all but finitely many z¿ = 0}

and

¿-~i(iXi)2 < 00
!

The spaces 1'2 and S represent the minimal and maximal topological types of

infinite-dimensional, a-compact, locally convex metric linear spaces in the following

sense: every infinite-dimensional, er-compact, locally compact metric linear space

contains a topological copy of 1'2 and can be topologically embedded in S (see [4,

p. 274]). Several natural pairs of infinite-dimensional spaces have a structure of

(¿2, Zf ̂ manifolds (cf. [3, 5, 8, 10]). To recognize them the following characteri-

zation was elaborated (cf. [1, 3, 14, 16, 20]): the pair (M,N) of metric spaces

is an (¿2, Z^-manifold pair iff M is an ¿2-nianifold, N is the countable union of

finite-dimensional compacta and the following condition holds:

(1) given e > 0, a pair (A, B) of finite-dimensional compacta and a map /: (A, B)

—> (M, N) such that f\B is an embedding, there exists an embedding v: A —> N

such that v\B = f\B and d(f(x),v(x)) < e for all x E A, where d is a metric on M.

This condition can be used to recognize /{-manifolds. But there are situations

when we do not know if a given space has a completion homeomorphic to l2 and

therefore (1) cannot be applied (e.g. in the case of an No-dimensional, nonlocally

convex, metric linear space). In [9, TC] a question is posed for intrinsic topologi-

cal characterizations of /{-manifolds and S-manifolds without considering suitable

completions. In this note we give the following characterizations:
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Let (X, d) be an absolute neighborhood retract which is a countable union of

finite-dimensional compacta. Then X is an /{-manifold iff the following condition

holds:

(2) given a pair (A, B) of finite-dimensional compacta, a map /: A —> Jf such

that f\B is an embedding, and e > 0, there is an embedding v: A —► X such that

v = / on B and d(f(x), v(x)) < e for x E A.

If a tr-compact ANR space Y satisfies the condition (2) for every pair of com-

pacta, then it is a S-manifold.

These results are obtained, analogously as in [18 and 19], by considering the

projections px'- X x /{ —► X and py. Y x S —► Y, respectively, and are based

on a theorem of Torunczyk [17] stating that X x /{ is an /{-manifold for tr-finite-

dimensional and tr-compact ANR space X, and Y x S is a S-manifold for tr-compact

ANR space Y. Since the spaces under consideration are incomplete we cannot use

Bing's shrinking criterion applied in [18, 19]. Instead of Bing's shrinking criterion

we use some lemma concerning a stabilizing sequence of maps (see [13, Lemma 4]

and §2 here).

To unify the proofs for the lí¡- and E-case an abstract scheme of approximation

of maps by homeomorphisms is given in §3. The characterizations of /{- and S-

manifolds are formulated in §4.

Applying our characterization, it is not hard to prove that every No-dimensional

linear metric space (i.e. having a Hamel basis of cardinality No) is homeomorphic

to /{. This fact and other consequences of our criteria are given in [6].

2. Preliminaries. In this section we fix notation and formulate some facts

needed later.

Suppose that X and Y are topological spaces. We write cov(X) for family of

all open covers of X and C(X, Y) for the space of all continuous functions from

X to Y topologized by the "limitation topology" in which each / E C(X, Y) has

the collection {V(f, U): U E cov(Y)} as a basis of neighborhoods, where V(f, U) —

{g E C(X,Y): for each x E X there exists U Eli containing both f(x) and g(x)}.

Members of V(/, U) are said to be ¿/-close to /.

Suppose that F is a metric space and d is a metric on Y. For a E C(Y, (0,1))

and f EC(X,y), let

V(f,a) = {9E G(X,Y): d(f(x),g(x)) < a(f(x)) for each x E X}.

The members of V(f, a) are said to be a-close to /. A map h:X x [0,1] —» Y is

said to be an ct-homotopy if, for each x E X, diam(h({x} x [0,1])) < a(h(x,0)).

The following facts are known (cf. Theorem 4.1 of [4] and [13], [15]):

(A) For every U E cov(Y) there exists a E C(Y, (0,1)) such that for every

fEC(X,Y)V(f,U)DV(f,a).
(B) For every U E cov(F) there exists a metric p on Y compatible with d such

that the cover of Y by open balls of radius 1 (with respect to p) is a refinement of

U.
The map / E C(X, Y) is a near-homeomorphism if for every U E cov(F) there

exists a homeomorphism of X onto Y which is ¿/-close to /.

A closed subset A of X is called a Z-set in X (A E Z(X)) if {/ E C(Q, X): f(Q)f)
A = 0} is dense in C(Q, X), where Q denotes the Hilbert cube.
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(C) A E Z(X) iff for every n the set {/ E C(In, X): f(In) n A = 0} is dense in

c(r,x).
We shall need the following fact [13, Lemma 4]:

(D) Let (Y, d) be a metric space and {Y«}^! be a closed increasing cover of

Y. For n = 1,2,..., let gn: X —> Y be a surjective map from a metric space X

satisfying the following conditions:

(i) gn\gñl{Yn\- gñX(Yn) -* Yn is one-to-one, and for every y EYn and every

neighborhood V of g~1 (y) in X, there exists an open neighborhood U of y

in F with g-1 (U)eV;

(ii) gn+i\g-l(Yn) = gn\gñ1(Yn);

(iii)  g„+i|X \ g~1(Yn) is a„-close to gn\X \ g-1(Yn), where

an(y) = 2~n {mini, d(y,Yn)},

with o¿o(y) = 1 for all y.

Then the map g, defined on the subset Z = \Jn°=1 gñ1(Yn) by g(z) = limgn(z),

is a homeomorphism of Z onto Y such that d(g(x),gi(x)) < 1 for x E Z.

Let / E C(X,Y), and let A be a closed subset of Y. The space (X, f)¿ is

defined to be the set (X\/_1(A))uA with the topology generated by open subsets

of X \ /_1(^) and by sets of the form f~x(U \ A) U (U n A), where U is open in

Y. We define the map /a: X —> (X, f)^ by the formula

tjr\-i* forxeX\/-1(A),

jA[)~\f(x)    for xEf-HA).

It is an easy consequence of the definition that the function p^:   (X, /)a —► Y,

defined by paÎa — f, is continuous and satisfies the following condition:

(E) for every y E A and every neighborhood V of p^1(y) in (X, f)¿ there exists

an open neighborhood U of y in Y with p~&(U) C V.

Let us observe that (V x Z,tt)a, where it: Y x Z —► Y is the projection, is a

cartesian product of Y and Z reduced over A (denoted by (Y x Z)a), see [4, p.

25]. If X and Y are metrizable, then for every closed subset A of F (X,/)a is

metrizable as a subset of (Y x X)a-

3. The strong universality property for compacta. A metric ANR space

is said to be strongly universal for (finite-dimensional) compacta if, for each map

/: A —► X of a (finite-dimensional) compactum, each closed subset B of A such

that f\B is an embedding, and each e > 0, there exists an embedding g:A —> X

such that g is e-close to / and g\B = f\A. The space /{ is strongly universal for

finite-dimensional compacta and the space S is strongly universal for compacta.

1. LEMMA. Let X be a metric ANR space which is strongly universal for

(finite-dimensional) compacta, let f: A —» X be a map of a compactum and let B be

a closed subset of A such that f\B is an embedding, f(A\B) c X\f(B) (and A\B
is a countable union of finite-dimensional compacta). Then given U E cov(X\ f(B))

there exists an embedding g:A—>X such that g\B — f\B and g\A \ B is U-close to

f\A \ B.

PROOF. Fix a metric d on X. By A there exists a continuous function

ß: X \/(B)-> (0,1)
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such that every two /?-close maps into X \ /(B) are ¿/-close. Let a: A —> [0,1) be

a continuous function such that a_1(0) = B and a(a) < ß(f(a)) for all a E A \ B.

Let A\B — U^Li ^n, where {An}n<L1 is a increasing sequence of finite-dimensional

compacta. We let en = inf{a(a):a E An}. Then {sn} is a decreasing sequence of

positive numbers with limen = 0. We shall inductively construct a sequence of

maps {/„: A —> X} such that:

(a) fn(A \B)EX\ f(B) and fn\B = f\B,
(b) fn\An-i = /„-i|An_i,
(c) /n|A„ U B is an embedding,

(d) d(fn(a),fn-i(a)) < 2~na(a) for all a.

We let /o = /. Assume that /„_i has been already constructed. Because

X\/(B) is an ANR the restriction h i-> h\An is an open map from C(A\B, X\f(B))

to C(An,X\ /(B)) (see [19, Lemma 1.3]). Hence, using strong universality prop-

erty, we can find an embedding vn: An —> X\/(B) such that t;n|An_i = fn_i\An-i

and vn is so close to /n_i|Ara that there is an extension gn: A \ B —* X \ f(B) of

vn which is 2-nen-homotopic to fn-i\A \ B. Let hn: (A\B)x [0,1] -> X \ /(B)

be a 2_nen-homotopy with hn(a,0) = fn-i(a) and hn(a, 1) = gn(a) for a E A \ B.

Let vn be a compact neighborhood of An in A \ B such that

diam(/in(W x [0,1])) < 2_na(a)    for a G F„.

Then the map /„ defined by

, , -, _ \ hn(a,Xn(a))    for a EA\B,

Jn[a) * I f(a) for aEB,

where Xn:A —► [0,1] is such that A"1^) D A \ Vn and A~1(l) = A„, has the

required properties. Since A\B = U^Li ^m the map g = lim/„ is an embedding

of A onto X such that g\B = f\B. By (d), for each aEA\B
oo

d(f(a),g(a)) < ^ 2~na(a) = a(a) < ß(f(a)).

h=l

Thus g\A \ B is ¿/-close to /|A \ B.

2. LEMMA. Let X be a metric ANR space. If X is strongly universal for

(finite-dimensional) compacta, then every (finite-dimensional) compact subset of X

is a Z-set in X.

PROOF. Fix a metrix d on X. Let X be strongly universal for finite-dimensional

compacta and let if be a finite-dimensional, compact subset of X. Let /: In —* X

be a map of an n-dimensional cube into X, and let e > 0 be given. We shall

construct a map g: In —> X which is e-close to / and such that g(In) C\K = 0. By

strong universality of X there is an embedding v:In —> X which is ^e-close to /.

We can regard the set B — v(In) L)K as a subset of Ira x {0} E Im x [0,1], for some

m > n. Then the inclusion i: B —+ X can be extended to a map h: A —► X, where

A is a compact neighborhood of B in Im x [0,1]. By strong universality of X there

is an embedding w: A —* X such that w\B = i. By compactness of v(In) there is

t E (0,1] such that d(w(x, t),w(x,0)) < \e for x E v(In). Let g(y) = w(v(y),t) for

y E In. Then g is the required map.

Analogously we can prove that every compact subset of a strongly universal for

compacta, ANR space X is a Z-set in X.
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3. LEMMA. Let X be an ANR which is strongly universal for finite-dimensional

compacta. Then every compact subset of X which is a countable union of finite-

dimensional compacta is a Z-set in X.

PROOF. Let F be a complete metric space which contains X and satisfies the

following condition:

(3) for every compact subset A in X, A € Z(X) iff A G Z(Y) (see [15, Proposi-

tion 4.1]).

Let K be a compact subset of X. By Lemma 2 K is a countable union of Z-sets

in X. By (3) K is a countable union of Z-sets in Y. Because Y is complete and K

is closed in Y, K E Z(Y) (see [4, p. 151]). By (3) again K E Z(X).

4. Near-homeomorphisms between tr-compacta. A metric ANR space X

has the estimated extension property for compacta if, for each open subset G of X,

and each ¿/ E cov(G), and each homeomorphism v:A^>B between compacta in G

such that v is ¿/-homotopic to id^, there exists a space homeomorphism h: X —► X

extending v, and such that h is st ¿/-close to idx-

4. THEOREM. Let X and Y be metric ANR spaces which are countable unions

of (finite-dimensional) compacta. Suppose that X has the estimated extension prop-

erty for compacta and Y is strongly universal for (finite-dimensional) compacta.

Let f: X —> Y be a map with the property that, for every compactum A in Y and

closed subset B of A, the map fA\X \ f~1(B): X \ f~1(B) -* (X,f)A \ B is a
near-homeomorphism.  Then f is a near-homeomorphism.

PROOF. We will only consider the case when X and Y are countable unions

of finite-dimensional compacta, and Y is strongly universal for finite-dimensional

compacta. Let X = IJ^Li An and Y = \Jn°=1 &n, where An and Bn are finite-

dimensional compacta for n =  1,2,_    Let d be any metric on Y.    By (B),

it is enough to check that there is a homeomorphism h of X onto Y such that

d(h(x),f(x)) < 1 for x E X. We shall inductively construct a sequence {Cn}^_0

of compact subsets of Y and a sequence {/in}^0 of homeomorphisms of X onto

(X, f)cn = Xn such that, for n = 1,2,...:

(a)n C„ D B„ U Cn-i\

(b)„ hn(An) C Cn;

(c)„ hnlh^^Cn-i) = hn-ilh^^Cn-i);

(d)n pnhn\X \ h~ii(Cn-i) is av-close to p„_i/in_i|X \ h'l^Cn-i), where

an: Y \ Cn-i -> (0,1) is defined by an(y) = 2~n min{l, d(y, C„-i)} and p„: Xn -»

Y is the map defined by pnfc„ = /•

We let Co = 0 and ho = id. Assume that /i¿: X —► X¿ and X¿ satisfying (a)¿, (b)¿,

(c)j and (d)i for0<i<n have been constructed. Note that pn(Xn\Cn) C Y\Cn.

let ¿/ be an open cover of Y \ Cn such that

V(pn\Xn \ Cn,3t3 U) C V(Pn\Xn \ Cn,an+i).

By strong universality of Y and Lemma 1, there is an embedding v of Dn+i =

h„(An+i)öCn C Xn into Y such that c>|Cn = idcn and v\Dn+i\Cn is ¿/-homotopic

to pn|B„+i \ Cn. Take

Cn+i = Bn+i U v(Dn+i) U H((Dn+i \ Cn) x [0,1]),
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where H:(Dn+i \ Cn) x [0,1] —* Y is a ¿/-homotopy with H(x,0) — pn(x) and

H(x, 1) = v(x) for x E Dn+i \ Cn. Because /cn|X \ /_1(C7n) is a homeomorphism

of X \ /_1(Cn) onto Xn \Cn, by the assumption about the map /, there exists a

homeomorphism gn+i:Xn —» Xn+i such that <7n+i|Cn = id and <7n+i|Xn \ Cn

is p~|1(¿/)-homotopic to the map /(c„+1,c„)|X„ \ Cn, where /(c„+1,c„) is de-

fined by the equality /(cn+,,c„) ° /c„ = /c„+i- The embeddings g„+i|Bn+i and

(pn+iC„+i)_1t> are st(p~^1(¿/))-homotopic. Since Xn+i, being homeomorphic to

X, has the estimated extension property for compacta there exists a homeomor-

phism u„4-i of Xn+i onto itself which is st2(p~_}:1(¿/))-close to the identity and

such that un+iqn+iDn+i = (pn+iCn+i)~1v. We let hn+i = un+ign+ihn. Then

pn+ihn+i is st2(¿/)-close to pn+ign+ihn and hence pn+ihn+i is st3(¿/)-close to

pnhn- It is easy to see that (a)n+i, (b)n+i, (c)„+i and (d)n+i are satisfied.

Since each p„ satisfies (E) we apply (D) to the sequences {Cn} and {pnhn}.

Therefore the map h = limpnhn is a homeomorphism of X onto Y such that

d(f(x),h(x)) < 1 for all x eX.

5. Characterization of V2- and E-manifolds.

5. THEOREM. Let X be an ANR space which is a countable union of finite-

dimensional compacta. Then X is an /{-manifold iff it is strongly universal for

finite-dimensional compacta.

PROOF. By a theorem of Torunczyk [17], X x /{ is an /{-manifold and therefore

has the estimated extension property for compacta. Given an open set U C X and

a compact set A in X the space (U x 12)ahu in an ANR (see [13, Lemma 5]). We

will prove that An U is a Z-set in (U X 12)adu- Take g:In —> (U x l2)Anu and

e > 0. Let nrj-.Ux/{ —+ (Ux 12)a denote the projection. Given e > 0 there exists a

map q: (U x 12)a x U x /{ such that ituq is e/2-close to the identity (see [13, Lemma

5]). By Lemma 3 A is a Z-set in X, hence A n U is a Z-set in U and (A n U) x /{

is a Z-set in U x /{ (see [4, p. 151]). Thus there exists a map f:In —> U x /{

such that f(In) D ((A n Í7) x /{) = 0 and so close to qg that itjjf is e/2-close to

TTuqg- Hence nrjf is £-close to g and Trrjf(In) n (An U) — 0. It means that AC\U

is a Z-set in (U x 12)ahu- By [15] the projection -kij: (U x /{) ->(t/x 12)ahu is a

near-homeomorphism. Thus the projection tt: X X /{ —» X satisfies the assumption

of Theorem 4. Hence 7r is a near-homeomorphism and X is an /{-manifold.

6. THEOREM. Let X be an ANR. Then X is a ^-manifold iff it is a-compact

and is strongly universal for compacta.

PROOF. We can repeat the proof of Theorem 5 replacing finite-dimensional

compacta by compacta and r2 by E.

6. Questions. Let us formulate questions which are closely related to the

problem of identifying <r-compact manifolds.

Let G be a locally contractible, metrizable topological group which is a count-

able union of finite-dimensional compacta and is not locally compact. We do not

know whether G must be strongly universal for finite-dimensional compacta, and

therefore an /{-manifold (see [9, TCG]).
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Henderson and Walsh in [11] have constructed an example of a cell-like decom-

position Q of /{ such that the decomposition space /{/'Q is not homeomorphic to

/{ but /{/'Q X [0,1] is homeomorphic to /{. Let us mention that there is no such

decomposition of the Hilbert space l2 (see [12]). It means that the space /{ behaves

more like finite-dimensional euclidean spaces than like the Hilbert space l2. Hence

the following question is interesting.

7. QUESTION. Let Q be a cell-like decomposition of /{ such that I*/Q is a

countable union of finite-dimensional compacta. Is /{/£ x [0,1] (or /{/£ x [0, l]2)

homeomorphic to /{?

Because the condition (2) is difficult to verify for some spaces it would be useful to

find some new conditions characterizing /{-manifolds. Examples of Henderson and

Walsh [11] show that the following conditions are not sufficient to assure than ANR

X, which is a countable union of finite-dimensional compacta, is an /{-manifold:

(4) every compact subset of X is a Z-set in X,

(5) every map /: @n°=iln —► X of the countable, free union of finite-dimensional

cubes is strongly approximable by maps g:®n°=iln —► X, for which the collection

{g(J")}„°=1 is discrete.

Note that there is a topologically complete separable metric AR space, which is

not homeomorphic to l2, but which satisfies (4) (see [2]).

Let e be the class of dense linear subspaces of l2 which are countable unions

of compacta with defined transfinite dimension. For every E E e let 'y(B) be the

infimum of ordinals a such that E is a countable union of compacta with transfinite

dimension < a (see [4, p. 282]).

8. QUESTION. Let Ei,E2 E e and let -y(Bi) = l(E2). Are Ei and E2 homeo-

morphic?

9. QUESTION. Is it true that for every a E {f(E): E E e} there is Ea E £, with

7(B) = a and which is topologically universal for all compacta with transfinite

dimension < a?

Note that every ¿r-compact linear subspace E of Z2 which is universal for com-

pacta is homeomorphic to S (see [7]).

ADDED IN PROOF. The proofs of Theorems 5 and 6 are based on the following

theorem of Toruñczyk [15, Proposition 5.1]:

(6) if A is a compact Z-set in a a-compact (c-finite-dimensional compact) ANR X,

then the projection it a '■ X x E —* (X x E) a is a near homeomorphism, where E = S

or/{.

It has been observed recently that the above theorem is false. Moreover it turns

out that the strong universality properties do not characterize /{- and E-manifolds

among tr-compact ANR's. Theorems 5 and 6 are true if, in addition, the space X

satisfies the following condition:

(7) every compact subset A of X is a strong Z-set in X (i.e. given an open cover

U of X there exists / : X —> X, ¿/-close to the identity map, such that f(X) D V = 0

for some neighborhood V of A).

Proofs are the same and use (6) which holds if A is a strong Z-set in X. Let

us note that for er-compact ANR's (7) is equivalent to (5). Details of proofs and

related examples will appear in [21].
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