CHARACTERIZING THE TOPOLOGY OF INFINITE-DIMENSIONAL σ -COMPACT MANIFOLDS

JERZY MOGILSKI

ABSTRACT. A metric space (X,d), which is a countable union of finite-dimensional compacta, is a manifold modelled on the space $l_2^f = \{(x_i) \in l_2: \text{ all but finitely many } x_i = 0\}$ iff X is an ANR and the following condition holds: given $\varepsilon > 0$, a pair of finite-dimensional compacta (A,B) and a map $f\colon A \to X$ such that f|B is an embedding, there is an embedding $g\colon A \to X$ such that g|B=f|B and $d(f(x),g(x))<\varepsilon$ for all $x\in A$. An analogous condition characterizes manifolds modelled on the space $\Sigma=\{(x_i)\in l_2\colon \sum_{i=1}^\infty (ix_i)^2<\infty\}$.

1. Introduction. In this note we will deal with the manifolds modelled on the following pre-Hilbert spaces:

$$l_2^f = \{(x_i) \in l_2: \text{ all but finitely many } x_i = 0\}$$

and

$$\Sigma = \left\{ (x_i) \in l_2 : \sum_{i=1}^{\infty} (ix_i)^2 < \infty \right\}.$$

The spaces l_2^f and Σ represent the minimal and maximal topological types of infinite-dimensional, σ -compact, locally convex metric linear spaces in the following sense: every infinite-dimensional, σ -compact, locally compact metric linear space contains a topological copy of l_2^f and can be topologically embedded in Σ (see [4, p. 274]). Several natural pairs of infinite-dimensional spaces have a structure of (l_2, l_2^2) -manifolds (cf. [3, 5, 8, 10]). To recognize them the following characterization was elaborated (cf. [1, 3, 14, 16, 20]): the pair (M, N) of metric spaces is an (l_2, l_2^f) -manifold pair iff M is an l_2 -manifold, N is the countable union of finite-dimensional compacta and the following condition holds:

(1) given $\varepsilon > 0$, a pair (A, B) of finite-dimensional compacta and a map $f: (A, B) \to (M, N)$ such that f|B is an embedding, there exists an embedding $v: A \to N$ such that v|B = f|B and $d(f(x), v(x)) < \varepsilon$ for all $x \in A$, where d is a metric on M.

This condition can be used to recognize l_2^f -manifolds. But there are situations when we do not know if a given space has a completion homeomorphic to l_2 and therefore (1) cannot be applied (e.g. in the case of an \aleph_0 -dimensional, nonlocally convex, metric linear space). In [9, TC] a question is posed for intrinsic topological characterizations of l_2^f -manifolds and Σ -manifolds without considering suitable completions. In this note we give the following characterizations:

Received by the editors July 28, 1983.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 54F65; Secondary 54D45, 57N17, 57N20.

Key words and phrases. Sigma-compact metric ANR's, the strong universality property for compacta, infinite-dimensional sigma-compact manifolds, Z-sets, near-homeomorphisms.

- Let (X,d) be an absolute neighborhood retract which is a countable union of finite-dimensional compacta. Then X is an l_2^f -manifold iff the following condition holds:
- (2) given a pair (A, B) of finite-dimensional compacta, a map $f: A \to X$ such that f|B is an embedding, and $\varepsilon > 0$, there is an embedding $v: A \to X$ such that v = f on B and $d(f(x), v(x)) < \varepsilon$ for $x \in A$.

If a σ -compact ANR space Y satisfies the condition (2) for every pair of compacta, then it is a Σ -manifold.

These results are obtained, analogously as in [18 and 19], by considering the projections p_X : $X \times l_2^f \to X$ and p_Y : $Y \times \Sigma \to Y$, respectively, and are based on a theorem of Toruńczyk [17] stating that $X \times l_2^f$ is an l_2^f -manifold for σ -finite-dimensional and σ -compact ANR space X, and $Y \times \Sigma$ is a Σ -manifold for σ -compact ANR space Y. Since the spaces under consideration are incomplete we cannot use Bing's shrinking criterion applied in [18, 19]. Instead of Bing's shrinking criterion we use some lemma concerning a stabilizing sequence of maps (see [13, Lemma 4] and §2 here).

To unify the proofs for the l_2^f - and Σ -case an abstract scheme of approximation of maps by homeomorphisms is given in §3. The characterizations of l_2^f - and Σ -manifolds are formulated in §4.

Applying our characterization, it is not hard to prove that every \aleph_0 -dimensional linear metric space (i.e. having a Hamel basis of cardinality \aleph_0) is homeomorphic to l_2^f . This fact and other consequences of our criteria are given in [6].

2. Preliminaries. In this section we fix notation and formulate some facts needed later.

Suppose that X and Y are topological spaces. We write cov(X) for family of all open covers of X and C(X,Y) for the space of all continuous functions from X to Y topologized by the "limitation topology" in which each $f \in C(X,Y)$ has the collection $\{V(f,\mathcal{U})\colon \mathcal{U}\in cov(Y)\}$ as a basis of neighborhoods, where $V(f,\mathcal{U})=\{g\in C(X,Y)\colon \text{for each }x\in X\text{ there exists }U\in\mathcal{U}\text{ containing both }f(x)\text{ and }g(x)\}.$ Members of $V(f,\mathcal{U})$ are said to be \mathcal{U} -close to f.

Suppose that Y is a metric space and d is a metric on Y. For $\alpha \in C(Y, (0, 1))$ and $f \in C(X, y)$, let

$$V(f,\alpha) = \{g \in C(X,Y) \colon \ d(f(x),g(x)) < \alpha(f(x)) \text{ for each } x \in X\}.$$

The members of $V(f,\alpha)$ are said to be α -close to f. A map $h: X \times [0,1] \to Y$ is said to be an α -homotopy if, for each $x \in X$, diam $(h(\{x\} \times [0,1])) < \alpha(h(x,0))$.

The following facts are known (cf. Theorem 4.1 of [4] and [13], [15]):

- (A) For every $\mathcal{U} \in \text{cov}(Y)$ there exists $\alpha \in C(Y,(0,1))$ such that for every $f \in C(X,Y)$ $V(f,\mathcal{U}) \supset V(f,\alpha)$.
- (B) For every $\mathcal{U} \in \text{cov}(Y)$ there exists a metric ρ on Y compatible with d such that the cover of Y by open balls of radius 1 (with respect to ρ) is a refinement of \mathcal{U} .

The map $f \in C(X,Y)$ is a near-homeomorphism if for every $\mathcal{U} \in \text{cov}(Y)$ there exists a homeomorphism of X onto Y which is \mathcal{U} -close to f.

A closed subset A of X is called a Z-set in X $(A \in Z(X))$ if $\{f \in C(Q, X): f(Q) \cap A = \emptyset\}$ is dense in C(Q, X), where Q denotes the Hilbert cube.

(C) $A \in Z(X)$ iff for every n the set $\{f \in C(I^n, X): f(I^n) \cap A = \emptyset\}$ is dense in $C(I^n,X)$.

We shall need the following fact [13, Lemma 4]:

- (D) Let (Y,d) be a metric space and $\{Y_n\}_{n=1}^{\infty}$ be a closed increasing cover of Y. For $n=1,2,\ldots$, let $g_n: X \to Y$ be a surjective map from a metric space X satisfying the following conditions:
 - (i) $g_n|g_n^{-1}(Y_n): g_n^{-1}(Y_n) \to Y_n$ is one-to-one, and for every $y \in Y_n$ and every neighborhood V of $g_n^{-1}(y)$ in X, there exists an open neighborhood $\mathcal U$ of yin Y with $g_n^{-1}(\mathcal{U}) \subset V$;

 - (ii) $g_{n+1}|g_n^{-1}(Y_n) = g_n|g_n^{-1}(Y_n);$ (iii) $g_{n+1}|X\setminus g_n^{-1}(Y_n)$ is α_n -close to $g_n|X\setminus g_n^{-1}(Y_n)$, where

$$\alpha_n(y) = 2^{-n} \{ \min 1, d(y, Y_n) \},$$

with $\alpha_0(y) = 1$ for all y.

Then the map g, defined on the subset $Z = \bigcup_{n=1}^{\infty} g_n^{-1}(Y_n)$ by $g(z) = \lim g_n(z)$, is a homeomorphism of Z onto Y such that $d(g(x), g_1(x)) < 1$ for $x \in Z$.

Let $f \in C(X,Y)$, and let A be a closed subset of Y. The space $(X,f)_A$ is defined to be the set $(X \setminus f^{-1}(A)) \cup A$ with the topology generated by open subsets of $X \setminus f^{-1}(A)$ and by sets of the form $f^{-1}(U \setminus A) \cup (U \cap A)$, where U is open in Y. We define the map $f_A: X \to (X, f)_A$ by the formula

$$f_A(x) = \begin{cases} x & \text{for } x \in X \setminus f^{-1}(A), \\ f(x) & \text{for } x \in f^{-1}(A). \end{cases}$$

It is an easy consequence of the definition that the function p_A : $(X, f)_A \to Y$, defined by $p_A f_A = f$, is continuous and satisfies the following condition:

(E) for every $y \in A$ and every neighborhood V of $p_A^{-1}(y)$ in $(X, f)_A$ there exists an open neighborhood U of y in Y with $p_A^{-1}(U) \subset V$.

Let us observe that $(Y \times Z, \pi)_A$, where $\pi: Y \times Z \to Y$ is the projection, is a cartesian product of Y and Z reduced over A (denoted by $(Y \times Z)_A$), see [4, p. 25]. If X and Y are metrizable, then for every closed subset A of Y $(X, f)_A$ is metrizable as a subset of $(Y \times X)_A$.

- 3. The strong universality property for compacta. A metric ANR space is said to be strongly universal for (finite-dimensional) compacta if, for each map $f: A \to X$ of a (finite-dimensional) compactum, each closed subset B of A such that f|B is an embedding, and each $\varepsilon > 0$, there exists an embedding $g: A \to X$ such that g is ε -close to f and g|B=f|A. The space l_2^f is strongly universal for finite-dimensional compacta and the space Σ is strongly universal for compacta.
- LEMMA. Let X be a metric ANR space which is strongly universal for (finite-dimensional) compacta, let $f: A \to X$ be a map of a compactum and let B be a closed subset of A such that f|B is an embedding, $f(A \setminus B) \subset X \setminus f(B)$ (and $A \setminus B$ is a countable union of finite-dimensional compacta). Then given $\mathcal{U} \in \text{cov}(X \setminus f(B))$ there exists an embedding $g: A \to X$ such that g|B = f|B and $g|A \setminus B$ is \mathcal{U} -close to $f|A\setminus B$.

PROOF. Fix a metric d on X. By A there exists a continuous function

$$\beta \colon X \setminus f(B) \to (0,1)$$

such that every two β -close maps into $X \setminus f(B)$ are \mathcal{U} -close. Let $\alpha \colon A \to [0,1)$ be a continuous function such that $\alpha^{-1}(0) = B$ and $\alpha(a) < \beta(f(a))$ for all $a \in A \setminus B$. Let $A \setminus B = \bigcup_{n=1}^{\infty} A_n$, where $\{A_n\}_{n=1}^{\infty}$ is a increasing sequence of finite-dimensional compacta. We let $\varepsilon_n = \inf\{\alpha(a) \colon a \in A_n\}$. Then $\{\varepsilon_n\}$ is a decreasing sequence of positive numbers with $\lim \varepsilon_n = 0$. We shall inductively construct a sequence of maps $\{f_n \colon A \to X\}$ such that:

- (a) $f_n(A \setminus B) \subset X \setminus f(B)$ and $f_n|B = f|B$,
- (b) $f_n|A_{n-1} = f_{n-1}|A_{n-1}$,
- (c) $f_n|A_n \cup B$ is an embedding,
- (d) $d(f_n(a), f_{n-1}(a)) \leq 2^{-n}\alpha(a)$ for all a.

We let $f_0 = f$. Assume that f_{n-1} has been already constructed. Because $X \setminus f(B)$ is an ANR the restriction $h \mapsto h|A_n$ is an open map from $C(A \setminus B, X \setminus f(B))$ to $C(A_n, X \setminus f(B))$ (see [19, Lemma 1.3]). Hence, using strong universality property, we can find an embedding $v_n \colon A_n \to X \setminus f(B)$ such that $v_n|A_{n-1} = f_{n-1}|A_{n-1}$ and v_n is so close to $f_{n-1}|A_n$ that there is an extension $g_n \colon A \setminus B \to X \setminus f(B)$ of v_n which is $2^{-n}\varepsilon_n$ -homotopic to $f_{n-1}|A \setminus B$. Let $h_n \colon (A \setminus B) \times [0,1] \to X \setminus f(B)$ be a $2^{-n}\varepsilon_n$ -homotopy with $h_n(a,0) = f_{n-1}(a)$ and $h_n(a,1) = g_n(a)$ for $a \in A \setminus B$. Let v_n be a compact neighborhood of A_n in $A \setminus B$ such that

$$\operatorname{diam}(h_n(\{a\}\times[0,1]))<2^{-n}\alpha(a)\quad\text{for }a\in V_n.$$

Then the map f_n defined by

$$f_n(a) = \left\{ egin{aligned} h_n(a,\lambda_n(a)) & ext{for } a \in A \setminus B, \\ f(a) & ext{for } a \in B, \end{aligned}
ight.$$

where $\lambda_n: A \to [0,1]$ is such that $\lambda_n^{-1}(0) \supset A \setminus V_n$ and $\lambda_n^{-1}(1) = A_n$, has the required properties. Since $A \setminus B = \bigcup_{n=1}^{\infty} A_n$, the map $g = \lim_{n \to \infty} f_n$ is an embedding of A onto X such that g|B = f|B. By (d), for each $a \in A \setminus B$

$$d(f(a),g(a)) \leq \sum_{h=1}^{\infty} 2^{-n} \alpha(a) = \alpha(a) < \beta(f(a)).$$

Thus $g|A \setminus B$ is \mathcal{U} -close to $f|A \setminus B$.

2. LEMMA. Let X be a metric ANR space. If X is strongly universal for (finite-dimensional) compacta, then every (finite-dimensional) compact subset of X is a Z-set in X.

PROOF. Fix a metrix d on X. Let X be strongly universal for finite-dimensional compacta and let K be a finite-dimensional, compact subset of X. Let $f\colon I^n\to X$ be a map of an n-dimensional cube into X, and let $\varepsilon>0$ be given. We shall construct a map $g\colon I^n\to X$ which is ε -close to f and such that $g(I^n)\cap K=\emptyset$. By strong universality of X there is an embedding $v\colon I^n\to X$ which is $\frac{1}{2}\varepsilon$ -close to f. We can regard the set $B=v(I^n)\cup K$ as a subset of $I^m\times\{0\}\subset I^m\times[0,1]$, for some $m\geq n$. Then the inclusion $i\colon B\to X$ can be extended to a map $h\colon A\to X$, where A is a compact neighborhood of B in $I^m\times[0,1]$. By strong universality of X there is an embedding $w\colon A\to X$ such that w|B=i. By compactness of $v(I^n)$ there is $t\in(0,1]$ such that $d(w(x,t),w(x,0))<\frac{1}{2}\varepsilon$ for $x\in v(I^n)$. Let g(y)=w(v(y),t) for $y\in I^n$. Then g is the required map.

Analogously we can prove that every compact subset of a strongly universal for compacta, ANR space X is a Z-set in X.

3. LEMMA. Let X be an ANR which is strongly universal for finite-dimensional compacta. Then every compact subset of X which is a countable union of finite-dimensional compacta is a Z-set in X.

PROOF. Let Y be a complete metric space which contains X and satisfies the following condition:

(3) for every compact subset A in X, $A \in Z(X)$ iff $A \in Z(Y)$ (see [15, Proposition 4.1]).

Let K be a compact subset of X. By Lemma 2 K is a countable union of Z-sets in X. By (3) K is a countable union of Z-sets in Y. Because Y is complete and K is closed in Y, $K \in Z(Y)$ (see [4, p. 151]). By (3) again $K \in Z(X)$.

- **4.** Near-homeomorphisms between σ -compacta. A metric ANR space X has the *estimated extension property for compacta* if, for each open subset G of X, and each $\mathcal{U} \in \text{cov}(G)$, and each homeomorphism $v: A \to B$ between compacta in G such that v is \mathcal{U} -homotopic to id_A , there exists a space homeomorphism $h: X \to X$ extending v, and such that h is st \mathcal{U} -close to id_X .
- 4. THEOREM. Let X and Y be metric ANR spaces which are countable unions of (finite-dimensional) compacta. Suppose that X has the estimated extension property for compacta and Y is strongly universal for (finite-dimensional) compacta. Let $f\colon X\to Y$ be a map with the property that, for every compactum A in Y and closed subset B of A, the map $f_A|X\setminus f^{-1}(B)\colon X\setminus f^{-1}(B)\to (X,f)_A\setminus B$ is a near-homeomorphism. Then f is a near-homeomorphism.

PROOF. We will only consider the case when X and Y are countable unions of finite-dimensional compacta, and Y is strongly universal for finite-dimensional compacta. Let $X = \bigcup_{n=1}^{\infty} A_n$ and $Y = \bigcup_{n=1}^{\infty} B_n$, where A_n and B_n are finite-dimensional compacta for $n = 1, 2, \ldots$ Let d be any metric on Y. By (B), it is enough to check that there is a homeomorphism h of X onto Y such that d(h(x), f(x)) < 1 for $x \in X$. We shall inductively construct a sequence $\{C_n\}_{n=0}^{\infty}$ of compact subsets of Y and a sequence $\{h_n\}_{n=0}^{\infty}$ of homeomorphisms of X onto $\{X, f\}_{C_n} = X_n$ such that, for $n = 1, 2, \ldots$:

- $(\mathbf{a})_n \ C_n \supset B_n \cup C_{n-1};$
- $(b)_n h_n(A_n) \subset C_n;$
- $(c)_n h_n | h_{n-1}^{-1}(C_{n-1}) = h_{n-1} | h_{n-1}^{-1}(C_{n-1});$
- (d)_n $p_n h_n | X \setminus h_{n-1}^{-1}(C_{n-1})$ is α_n -close to $p_{n-1} h_{n-1} | X \setminus h_{n-1}^{-1}(C_{n-1})$, where $\alpha_n : Y \setminus C_{n-1} \to (0,1)$ is defined by $\alpha_n(y) = 2^{-n} \min\{1, d(y, C_{n-1})\}$ and $p_n : X_n \to Y$ is the map defined by $p_n f_{C_n} = f$.

We let $C_0 = \emptyset$ and $h_0 = \text{id}$. Assume that $h_i : X \to X_i$ and X_i satisfying $(a)_i$, $(b)_i$, $(c)_i$ and $(d)_i$ for $0 \le i \le n$ have been constructed. Note that $p_n(X_n \setminus C_n) \subset Y \setminus C_n$. let \mathcal{U} be an open cover of $Y \setminus C_n$ such that

$$V(p_n|X_n \setminus C_n, \operatorname{st}^3 \mathcal{U}) \subset V(p_n|X_n \setminus C_n, \alpha_{n+1}).$$

By strong universality of Y and Lemma 1, there is an embedding v of $D_{n+1} = h_n(A_{n+1}) \cup C_n \subset X_n$ into Y such that $v|C_n = \mathrm{id}_{C_n}$ and $v|D_{n+1} \setminus C_n$ is \mathcal{U} -homotopic to $p_n|D_{n+1} \setminus C_n$. Take

$$C_{n+1} = B_{n+1} \cup v(D_{n+1}) \cup H((D_{n+1} \setminus C_n) \times [0,1]),$$

where $H:(D_{n+1}\setminus C_n)\times [0,1]\to Y$ is a $\mathcal U$ -homotopy with $H(x,0)=p_n(x)$ and H(x,1)=v(x) for $x\in D_{n+1}\setminus C_n$. Because $f_{C_n}|X\setminus f^{-1}(C_n)$ is a homeomorphism of $X\setminus f^{-1}(C_n)$ onto $X_n\setminus C_n$, by the assumption about the map f, there exists a homeomorphism $g_{n+1}\colon X_n\to X_{n+1}$ such that $g_{n+1}|C_n=\operatorname{id}$ and $g_{n+1}|X_n\setminus C_n$ is $p_{n+1}^{-1}(\mathcal U)$ -homotopic to the map $f_{(C_{n+1},C_n)}|X_n\setminus C_n$, where $f_{(C_{n+1},C_n)}$ is defined by the equality $f_{(C_{n+1},C_n)}\circ f_{C_n}=f_{C_{n+1}}$. The embeddings $g_{n+1}|D_{n+1}$ and $(p_{n+1}C_{n+1})^{-1}v$ are $\operatorname{st}(p_{n+1}^{-1}(\mathcal U))$ -homotopic. Since X_{n+1} , being homeomorphic to X, has the estimated extension property for compacta there exists a homeomorphism u_{n+1} of X_{n+1} onto itself which is $\operatorname{st}^2(p_{n+1}^{-1}(\mathcal U))$ -close to the identity and such that $u_{n+1}q_{n+1}D_{n+1}=(p_{n+1}C_{n+1})^{-1}v$. We let $h_{n+1}=u_{n+1}g_{n+1}h_n$. Then $p_{n+1}h_{n+1}$ is $\operatorname{st}^2(\mathcal U)$ -close to $p_{n+1}g_{n+1}h_n$ and hence $p_{n+1}h_{n+1}$ is $\operatorname{st}^3(\mathcal U)$ -close to p_nh_n . It is easy to see that $(a)_{n+1}$, $(b)_{n+1}$, $(c)_{n+1}$ and $(d)_{n+1}$ are satisfied.

Since each p_n satisfies (E) we apply (D) to the sequences $\{C_n\}$ and $\{p_nh_n\}$. Therefore the map $h = \lim p_nh_n$ is a homeomorphism of X onto Y such that d(f(x), h(x)) < 1 for all $x \in X$.

5. Characterization of l_2^f and Σ -manifolds.

5. THEOREM. Let X be an ANR space which is a countable union of finite-dimensional compacta. Then X is an l_2^f -manifold iff it is strongly universal for finite-dimensional compacta.

PROOF. By a theorem of Torunczyk [17], $X \times l_2^f$ is an l_2^f -manifold and therefore has the estimated extension property for compacta. Given an open set $U \subset X$ and a compact set A in X the space $(U \times l_2^f)_{A \cap U}$ in an ANR (see [13, Lemma 5]). We will prove that $A \cap U$ is a Z-set in $(U \times l_2^f)_{A \cap U}$. Take $g \colon I^n \to (U \times l_2^f)_{A \cap U}$ and $\varepsilon > 0$. Let $\pi_U \colon U \times l_2^f \to (U \times l_2^f)_A$ denote the projection. Given $\varepsilon > 0$ there exists a map $q \colon (U \times l_2^f)_{A \times U} \times l_2^f$ such that $\pi_U q$ is $\varepsilon/2$ -close to the identity (see [13, Lemma 5]). By Lemma 3 A is a Z-set in X, hence $A \cap U$ is a Z-set in U and $(A \cap U) \times l_2^f$ is a Z-set in $U \times l_2^f$ (see [4, p. 151]). Thus there exists a map $f \colon I^n \to U \times l_2^f$ such that $f(I^n) \cap ((A \cap U) \times l_2^f) = \emptyset$ and so close to qg that $\pi_U f$ is $\varepsilon/2$ -close to $\pi_U qg$. Hence $\pi_U f$ is ε -close to g and $\pi_U f(I^n) \cap (A \cap U) = \emptyset$. It means that $A \cap U$ is a Z-set in $(U \times l_2^f)_{A \cap U}$. By [15] the projection $\pi_U \colon (U \times l_2^f) \to (U \times l_2^f)_{A \cap U}$ is a near-homeomorphism. Thus the projection $\pi \colon X \times l_2^f \to X$ satisfies the assumption of Theorem 4. Hence π is a near-homeomorphism and X is an l_2^f -manifold.

6. THEOREM. Let X be an ANR. Then X is a Σ -manifold iff it is σ -compact and is strongly universal for compacta.

PROOF. We can repeat the proof of Theorem 5 replacing finite-dimensional compacta by compacta and l_2^f by Σ .

6. Questions. Let us formulate questions which are closely related to the problem of identifying σ -compact manifolds.

Let G be a locally contractible, metrizable topological group which is a countable union of finite-dimensional compacta and is not locally compact. We do not know whether G must be strongly universal for finite-dimensional compacta, and therefore an l_2^f -manifold (see [9, TCG]).

Henderson and Walsh in [11] have constructed an example of a cell-like decomposition \mathcal{G} of l_2^f such that the decomposition space l_2^f/\mathcal{G} is not homeomorphic to l_2^f but $l_2^f/\mathcal{G} \times [0,1]$ is homeomorphic to l_2^f . Let us mention that there is no such decomposition of the Hilbert space l_2 (see [12]). It means that the space l_2^f behaves more like finite-dimensional euclidean spaces than like the Hilbert space l_2 . Hence the following question is interesting.

7. QUESTION. Let \mathcal{G} be a cell-like decomposition of l_2^f such that l_2^f/\mathcal{G} is a countable union of finite-dimensional compacta. Is $l_2^f/\mathcal{G} \times [0,1]$ (or $l_2^f/\mathcal{G} \times [0,1]^2$) homeomorphic to l_2^f ?

Because the condition (2) is difficult to verify for some spaces it would be useful to find some new conditions characterizing l_2^f -manifolds. Examples of Henderson and Walsh [11] show that the following conditions are not sufficient to assure than ANR X, which is a countable union of finite-dimensional compacta, is an l_2^f -manifold:

- (4) every compact subset of X is a Z-set in X,
- (5) every map $f: \bigoplus_{n=1}^{\infty} I^n \to X$ of the countable, free union of finite-dimensional cubes is strongly approximable by maps $g: \bigoplus_{n=1}^{\infty} I^n \to X$, for which the collection $\{g(I^n)\}_{n=1}^{\infty}$ is discrete.

Note that there is a topologically complete separable metric AR space, which is not homeomorphic to l_2 , but which satisfies (4) (see [2]).

Let ε be the class of dense linear subspaces of l_2 which are countable unions of compacta with defined transfinite dimension. For every $E \in \varepsilon$ let $\gamma(E)$ be the infimum of ordinals α such that E is a countable union of compacta with transfinite dimension $< \alpha$ (see [4, p. 282]).

- 8. QUESTION. Let $E_1, E_2 \in \varepsilon$ and let $\gamma(E_1) = \gamma(E_2)$. Are E_1 and E_2 homeomorphic?
- 9. QUESTION. Is it true that for every $\alpha \in \{\gamma(E): E \in \varepsilon\}$ there is $E_{\alpha} \in \varepsilon$, with $\gamma(E) = \alpha$ and which is topologically universal for all compacta with transfinite dimension $< \alpha$?

Note that every σ -compact linear subspace E of l_2 which is universal for compacta is homeomorphic to Σ (see [7]).

ADDED IN PROOF. The proofs of Theorems 5 and 6 are based on the following theorem of Toruńczyk [15, Proposition 5.1]:

(6) if A is a compact Z-set in a σ -compact (σ -finite-dimensional compact) ANR X, then the projection $\pi_A: X \times E \to (X \times E)_A$ is a near homeomorphism, where $E = \Sigma$ or l_2^f .

It has been observed recently that the above theorem is false. Moreover it turns out that the strong universality properties do not characterize l_2^f and Σ -manifolds among σ -compact ANR's. Theorems 5 and 6 are true if, in addition, the space X satisfies the following condition:

(7) every compact subset A of X is a strong Z-set in X (i.e. given an open cover \mathcal{U} of X there exists $f: X \to X$, \mathcal{U} -close to the identity map, such that $f(X) \cap V = \emptyset$ for some neighborhood V of A).

Proofs are the same and use (6) which holds if A is a strong Z-set in X. Let us note that for σ -compact ANR's (7) is equivalent to (5). Details of proofs and related examples will appear in [21].

REFERENCES

- 1. R. D. Anderson, On sigma-compact subsets of finite-dimensional spaces, preprint.
- R. D. Anderson, D. W. Curtis and J. van Mill, A fake topological Hilbert space, Trans. Amer. Math. Soc. 272 (1982), 311-321.
- C. Bessaga and A. Pelczynski, The estimated extension theorem, homogeneous collections and skeletons, and their application to the topological classification of linear space and convex sets, Fund. Math. 69 (1970), 153-190.
- 4. ____, Selected topics in infinite-dimensional topology, PWN, Warsaw, 1975.
- D. W. Curtis and N. T. Nhu, Hyperspaces of finite subsets which are homeomorphic to ℵ₀-dimensional linear metric spaces, Topology Appl. (to appear).
- 6. D. W. Curtis, T. Dobrowolski and J. Mogilski, Some applications of the topological characterizations of the sigma-compact spaces l_1^2 and Σ , Trans. Amer. Math. Soc. (to appear).
- T. Dobrowolski and J. Mogilski, Sigma-compact locally convex metric linear spaces universal for compacta are homeomorphic, Proc. Amer. Math. Soc. 85 (1982), 653-658.
- R. Geoghegan, Manifolds of piecewise linear maps and a related normed linear space, Bull. Amer. Math. Soc. 77 (1971), 629-632.
- R. Geoghegan (Editor), Open problems in infinite-dimensional topology, Topology Proc. 4 (1979), 287–338.
- R. Geoghegan and W. Haver, On the space of piecewise-linear homeomorphisms of a manifold, Proc. Amer. Math. Soc. 55 (1976), 145-151.
- J. P. Henderson and J. J. Walsh, Examples of cell-like decompositions of the infinite dimensinal manifolds σ and Σ, Topology Appl. 16 (1983), 143-154.
- 12. J. Mogilski, CE-decomposition of l_2 -manifolds, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. **27** (1979), 309–314.
- 13. J. Mogilski and H. Roslaniec, Cell-like decompositions of ANR's, Topology Appl. (submitted).
- H. Torunczyk, Skeletons and absorbing sets in complete meric spaces, Doctoral thesis, Institute of Mathematics of the Polish Academic of Sciences, 1970.
- H. Torunczyk, Concerning locally homotopy negligible sets and characterization of l₂-manifolds, Fund. Math. 101 (1978), 93-110.
- 16. ____, An introduction to infinite-dimensional topology, in preparation.
- 17. ____, Absolute retracts as factors of normed linear spaces, Fund. Math. 86 (1974), 53-67.
- 18. _____, On CE-images of the Hilbert cube and characterization of Q-manifolds, Fund. Math. 106 (1980), 31-40.
- 19. ____, Characterizing Hilbert space topology, Fund. Math. 111 (1981), 247-262.
- J. West, The ambient homeomorphy of incomplete subspaces of infinite-dimensional Hilbert spaces, Pacific J. Math. 34 (1970), 257–267.
- 21. Ph. Bowers, M. Bestvina, J. Mogilski and J. Walsh, Characterizing Hilbert space manifolds revisited, in preparation.

INSTITUTE OF MATHEMATICS, UNIVERSITY OF WARSAW, PKIN, 00-901 WARSAW, POLAND