REGULARITY OF THE DISTANCE FUNCTION

ROBERT L. FOOTE

ABSTRACT. A coordinate-free proof is given of the fact that the distance function \(\delta \) for a \(C^k \) submanifold \(M \) of \(\mathbb{R}^n \) is \(C^k \) near \(M \) when \(k \geq 2 \). The result holds also when \(k = 1 \) if \(M \) has a neighborhood with the unique nearest point property. The differentiability of \(\delta \) in the \(C^1 \) case is seen to follow directly from geometric considerations.

In the study of analysis and geometry, the function that measures the distance to a submanifold plays an important role. Let \(M \) be a submanifold of \(\mathbb{R}^n \), and let \(\delta : \mathbb{R}^n \to \mathbb{R} \) be the distance function for \(M \), \(\delta(x) = \text{dist}(x, M) \). If \(M \) is \(C^k \), then \(\delta \) is easily seen to be \(C^{k-1} \) near \(M \), since \(\delta \) is always continuous and can be written in terms of the directions normal to \(M \). It is the case, however, that \(\delta \) is actually \(C^k \) near \(M \) when \(k \geq 2 \), and even when \(k = 1 \) under certain circumstances. As Krantz and Parks [4] point out, this fact deserves to be better known that it is.

The regularity of \(\delta \) was first considered in [1], and the proof for the case \(k \geq 2 \) is found in [2]. The combined results (including the case \(k = 1 \)) are given in [4] in a proof based on the work in [1].

The purpose of this note is to present a simple, coordinate-free proof of the following theorem and its \(C^1 \) analog.

THEOREM 1. Let \(M \subset \mathbb{R}^n \) be a compact, \(C^k \) submanifold with \(k \geq 2 \). Then \(M \) has a neighborhood \(U \) so that \(\delta \) is \(C^k \) on \(U - M \).

In the \(C^1 \) case, the additional hypothesis is needed that some neighborhood of \(M \) have the unique nearest point property. (See [1, 4].) A neighborhood \(U \) of \(M \) has this property if for every \(x \in U \) there is a unique point \(P(x) \in M \) so that \(\delta(x) = \text{dist}(x, P(x)) \). The map \(P : U \to M \) is called the projection onto \(M \).

LEMMA. Let \(M \) satisfy the hypothesis of Theorem 1. Then \(M \) has a neighborhood \(U \) with the unique nearest point property, and the projection map \(P : U \to M \) is \(C^{k-1} \).

PROOF. This is just the tubular neighborhood theorem with the added observation that the projection \(P \) factors through the map that creates the neighborhood. (See [3].)

Let

\[\nu(M) = \{(p, v) \in \mathbb{R}^n \times \mathbb{R}^n \mid p \in M \text{ and } v \perp T_p M \} \]

be the normal bundle for \(M \); it is a \(C^{k-1} \) manifold of dimension \(n \). Define the \(C^{k-1} \) map \(F : \nu(M) \to \mathbb{R}^n \) by \(F(p, v) = p + v \). The Jacobian \(F_* \) is easily seen to be nonsingular along the zero section \(\{(p, 0) \in \nu(M)\} \). By the inverse function theorem and the compactness of \(M \), there is an \(\varepsilon > 0 \) such that \(F \) restricted to

Received by the editors September 26, 1983.
1980 Mathematics Subject Classification. Primary 53A07; Secondary 26B05.
©1984 American Mathematical Society 0002-9939/84 $1.00 + .25 per page

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
\(\nu_\varepsilon(M) = \{(p,v) \in \nu(M) : |v| < \varepsilon\} \) is a \(C^{k-1} \) diffeomorphism onto a neighborhood \(U \) of \(M \). On \(U \) the map \(P \) is the composition

\[
U \xrightarrow{F^{-1}} \nu_\varepsilon(M) \rightarrow M,
\]

where the last map is projection onto the first factor. Q.E.D.

In [4] \(M \) is said to have positive reach of at least \(\varepsilon \). The largest possible neighborhood \(U \) on which \(P \) is defined is determined in part by the local extrinsic geometry of \(M \) inside \(\mathbb{R}^n \): the extrinsic curvature of \(M \) governs the location of the singularities of the map \(F : \nu(M) \rightarrow \mathbb{R}^n \). (See [5, §6].)

Proof of Theorem 1. On the neighborhood \(U \) where \(P \) is well defined, the distance function is given by \(\delta(x) = \|x - P(x)\| \). For \(v \in \mathbb{R}^n \), let \(D_v \) denote differentiation in the direction \(v \). Then for \(x \in U - M \),

\[
(D_v \delta^2)(x) = 2(x - P(x)) \cdot (v - D_v P(x)) = 2(x - P(x)) \cdot v,
\]

since \(D_v P(x) \) is tangent to \(M \). Hence

\[
(*) \quad (\text{grad } \delta^2)(x) = 2(x - P(x)),
\]

which is \(C^{k-1} \), and so \(\delta \) is \(C^k \) on \(U - M \). Q.E.D.

In the \(C^1 \) case one needs to examine the behavior of the difference quotient.

Theorem 2. Let \(M \) be \(C^1 \) and suppose \(U \) is a neighborhood of \(M \) with the unique nearest point property. Then \(\delta \) is \(C^1 \) on \(U - M \).

Proof. A simple argument (see [1, 4.8(4)]) shows that \(P : U \rightarrow M \) is continuous. Thus, it suffices to show that \((*) \) holds on \(U - M \). If this is not the case, then there is some point \(x \in U - M \) and some vector \(v \in \mathbb{R}^n \) such that

\[
(1) \quad \lim_{t \to 0^+} \frac{\delta^2(x + tv) - \delta^2(x)}{t} < 2(x - P(x)) \cdot v
\]

or

\[
(2) \quad \lim_{t \to 0^+} \frac{\delta^2(x + tv) - \delta^2(x)}{t} > 2(x - P(x)) \cdot v.
\]

In the first case, one can find a fixed \(\varepsilon > 0 \) and then choose \(t > 0 \) arbitrarily close to zero such that

\[
\delta^2(x + tv) < \delta^2(x) + 2(x - P(x)) \cdot tv - t\varepsilon.
\]

It follows, then, that

\[
\text{dist}^2(x, P(x + tv)) = \|(x + tv - P(x + tv)) - tv\|^2
= \delta^2(x + tv) - 2(x + tv - P(x + tv)) \cdot tv + t^2\|v\|^2
< \delta^2(x) + 2(P(x + tv) - P(x)) \cdot tv - t\varepsilon - t^2\|v\|^2.
\]

By the continuity of \(P \), \(t \) can be chosen small enough so that

\[
\text{dist}(x, P(x + tv)) < \delta(x) = \text{dist}(x, P(x)).
\]

Then \(x \) is closer to \(P(x + tv) \) than to \(P(x) \), a contradiction.

Similarly, \((2) \) leads to \(\text{dist}(x + tv, P(x)) < \text{dist}(x + tv, P(x + tv)) \). The theorem follows. Q.E.D.
REMARKS. (1) With some modifications, the same proofs will work when M is a submanifold of a Riemannian manifold.

(2) If M is a hypersurface of the form $M = \{ x \in \mathbb{R}^n \mid \rho(x) = 0 \}$, where ρ is a C^k function with $d\rho \neq 0$ on M, then one can form the signed distance function

$$
\tilde{\delta}(x) = \begin{cases}
\delta(x) & \text{for } \rho(x) \geq 0, \\
-\delta(x) & \text{for } \rho(x) \leq 0.
\end{cases}
$$

It is easy to see that $\tilde{\delta}$ is C^k on all of U.

(3) In the C^1 case, the regularity of M does not enter into the proof. M can be replaced by any closed set in \mathbb{R}^n, and U by any open set on which the projection $P: U \to M$ is well defined. (For the original treatment of this, see [1].)

(4) The extra hypothesis in the C^1 case is essential. The distance function for the curve $y = |x|^{3/2}$ in \mathbb{R}^2 is not differentiable at any point on the y-axis. See [4] for details.

For further remarks and examples, the reader is directed to the references, especially [4].

REFERENCES