Regularity of the distance function
HTML articles powered by AMS MathViewer
- by Robert L. Foote
- Proc. Amer. Math. Soc. 92 (1984), 153-155
- DOI: https://doi.org/10.1090/S0002-9939-1984-0749908-9
- PDF | Request permission
Abstract:
A coordinate-free proof is given of the fact that the distance function $\delta$ for a ${C^k}$ submanifold $M$ of ${{\mathbf {R}}^n}$ is ${C^k}$ near $M$ when $k \geqslant 2$. The result holds also when $k = 1$ if $M$ has a neighborhood with the unique nearest point property. The differentiability of $\delta$ in the ${C^1}$ case is seen to follow directly from geometric considerations.References
- Herbert Federer, Curvature measures, Trans. Amer. Math. Soc. 93 (1959), 418–491. MR 110078, DOI 10.1090/S0002-9947-1959-0110078-1
- David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, Grundlehren der Mathematischen Wissenschaften, Vol. 224, Springer-Verlag, Berlin-New York, 1977. MR 0473443, DOI 10.1007/978-3-642-96379-7
- Victor Guillemin and Alan Pollack, Differential topology, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1974. MR 0348781
- Steven G. Krantz and Harold R. Parks, Distance to $C^{k}$ hypersurfaces, J. Differential Equations 40 (1981), no. 1, 116–120. MR 614221, DOI 10.1016/0022-0396(81)90013-9
- J. Milnor, Morse theory, Annals of Mathematics Studies, No. 51, Princeton University Press, Princeton, N.J., 1963. Based on lecture notes by M. Spivak and R. Wells. MR 0163331, DOI 10.1515/9781400881802
Bibliographic Information
- © Copyright 1984 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 92 (1984), 153-155
- MSC: Primary 58C07; Secondary 53A07
- DOI: https://doi.org/10.1090/S0002-9939-1984-0749908-9
- MathSciNet review: 749908