On nilpotent and solvable Malcev algebras
HTML articles powered by AMS MathViewer
- by Ernest L. Stitzinger
- Proc. Amer. Math. Soc. 92 (1984), 157-163
- DOI: https://doi.org/10.1090/S0002-9939-1984-0754693-0
- PDF | Request permission
Abstract:
Solvable and nilpotent Malcev algebras are investigated in the spirit of extending results from Lie algebras. The first section presents a proof of Engel’s theorem with the Jacobson refinement and some consequences. The second part deals with conjugacy of Cartan subalgebras and consequences.References
- Donald W. Barnes, Nilpotency of Lie algebras, Math. Z. 79 (1962), 237–238. MR 150177, DOI 10.1007/BF01193118 —, On the cohomology of solvable Lie algebras, Math. Z. 101 (1967), 242-249.
- Donald W. Barnes, On Cartan subalgebras of Lie algebras, Math. Z. 101 (1967), 350–355. MR 220785, DOI 10.1007/BF01109800
- Alfy Abd el Malek, On the Frattini subalgebra of a Mal′cev algebra, Arch. Math. (Basel) 37 (1981), no. 4, 306–315. MR 639334, DOI 10.1007/BF01234362 P. Hall, On the Sylow systems of a solvable group, Proc. London Math. Soc. 43 (1937), 316-323. —, On the system normalizers of a solvable group, Proc. London Math. Soc. 43 (1937), 507-528.
- N. Jacobson, A note on automorphisms and derivations of Lie algebras, Proc. Amer. Math. Soc. 6 (1955), 281–283. MR 68532, DOI 10.1090/S0002-9939-1955-0068532-9 —, Lie algebras, Interscience, New York, 1966.
- E. N. Kuz′min, Mal′cev algebras and their representations, Algebra i Logika 7 (1968), no. 4, 48–69 (Russian). MR 0252468
- Arthur A. Sagle, Malcev algebras, Trans. Amer. Math. Soc. 101 (1961), 426–458. MR 143791, DOI 10.1090/S0002-9947-1961-0143791-X
Bibliographic Information
- © Copyright 1984 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 92 (1984), 157-163
- MSC: Primary 17D10
- DOI: https://doi.org/10.1090/S0002-9939-1984-0754693-0
- MathSciNet review: 754693