CREMONA TRANSFORMATIONS
THAT ARE AFFINE AUTOMORPHISMS

HISAO YOSHIHARA

ABSTRACT. We present the condition on which a Cremona transformation induces an automorphism of \mathbb{A}^2.

1. In this paper the ground field is assumed to be an algebraically closed field of characteristic zero. Let C be an irreducible algebraic curve in \mathbb{P}^2. Then let us call C a curve of type I if $C - \{P\} \cong \mathbb{A}^1$ for some point $P \in C$, and a curve of type II if $C \setminus L \cong \mathbb{A}^1$ for some line L [3]. Let B and G be the groups of birational transformations of \mathbb{P}^2 (i.e., Cremona transformations) and automorphisms of \mathbb{A}^2, respectively. Identifying $\mathbb{P}^2 - L$ with \mathbb{A}^2, where L is a line, we regard G as a subgroup of B hereafter. Let $F(f)$ denote the set of fundamental points of $f \in B$. Then let us call L a general line if $L \cap F(f) = \emptyset$. Two elements f_1 and f_2 of B are said to be equivalent if there is a projective transformation p satisfying $f_2 = pf_1$. If f is equivalent to an element of G, then $f(L)$ is a curve of type II for any general line L. On the other hand, in case $C \setminus L \cong \mathbb{A}^1$, there is an automorphism of $\mathbb{P}^2 - L$ by which G is carried to a line [1]. Thus there is a close relation between automorphisms of \mathbb{A}^2 and curves of type II. We shall give a formulation of this fact in Remark 1. Here we present the condition on which a Cremona transformation induces an automorphism of \mathbb{A}^2.

THEOREM. Let f be a Cremona transformation. Suppose the exceptional curve of f is irreducible and $f(L)$ is a curve of type II for a general line L. Then f is equivalent to an element of G, hence $f(L')$ is also a curve of type II for every general line L'.

Note that the theorem is not necessarily true in case we drop the condition of irreducibility (see Example 2). On the other hand, in case $f(L)$ is a curve of type I, $f(L')$ is not necessarily a curve of the type for another general line L' (see Example 3).

2. Proof of the Theorem. For a curve C of type I, we define R as in [3], i.e., let (e_1, \ldots, e_t) be the sequence of the multiplicities of the infinitely near singular points of P with degree $d \geq 3$. Then $R = R(C)$ is $d^2 - \sum_{i=1}^{t} e_i^2 - e_t + 1$. We have shown that $R(C) \geq 2$ if C is of type II [3]. Let D and D' be the exceptional curves of f and f^{-1} respectively. Let σ_i, $i = 1, \ldots, r$, be blow-ups such that $f \cdot \sigma$ is a morphism, where $\sigma = \sigma_1 \cdots \sigma_r$. Since D is irreducible, so is D'. Hence the centers of the blow-ups are unique if the number r is minimal. Thus $\sigma^{-1}[D]$ is first contracted by $f \cdot \sigma$, where $[\]$ denotes the proper transform. Note that $\sigma^{-1}[D]$ is a nonsingular rational curve with the self-intersection number -1 by Castelnuovo's
criterion for contracting a curve [2]. Since L is a general line, the transform $\sigma^{-1}(L)$ has self-intersection number 1. The transforms $\sigma^{-1}(L)$ and $\sigma^{-1}[D]$ meet at only one point Q, since $f(L)$ is of type I. Therefore the intersection number of those curves at Q is e, which is the degree of D. Suppose $e \geq 2$. Then, after the contraction of $\sigma^{-1}[D]$, the image of L has a singular point with multiplicity e. Hence the degree of $f(L)$ is at least 3. From the above consideration we infer that $R(f(L)) = 2 - e$. This means $f(L)$ is not of type II. Thus we have a contradiction, hence D must be a line. Since f induces an isomorphism between $\mathbb{P}^2 - D$ and $\mathbb{P}^2 - D'$, the curve D' is also a line. Hence f is equivalent to an element of G.

3. Let (X, Y, Z) be a set of homogeneous coordinates on \mathbb{P}^2, and let X, Y and Z denote the lines defined by $X = 0$, $Y = 0$ and $Z = 0$, respectively. Moreover, let $P = (1, 0, 0)$.

REMARK 1. Let S be the set consisting of curves C such that $C \cap Z = \{P\}$ and $C - \{P\} \cong \mathbb{A}^1$. Identifying $\mathbb{P}^2 - Z$ with \mathbb{A}^2, we put

$G_1 = \{f \in G|F(f^{-1}) = \{P\} \text{ or } f(P) = P \text{ according to } F(f) \neq 0 \text{ or } F(f) = 0\}$

and

$G_2 = \{f \in G|f[Y] = Y\}$. If $f \in G_2$ and $F(f) \neq 0$, then $F(f^{-1}) = \{P\}$, otherwise the degree of $f^{-1}[Y]$ will be greater than 1. Thus we see that $G_2 \subset G_1$ and G_2 becomes a group; hence we consider the set G_1/G_2 of equivalence classes of G_1 with respect to G_2. Then there is a bijection between G_1/G_2 and S. In fact, let an element $f \in G_1$ correspond to $f[Y]$, which belongs to S. Thanks to [1] this mapping is surjective, hence defines the bijection. Thus, we may say that nonsingular rational curves in \mathbb{A}^2 passing through the infinite point P can be “parametrized” by G_1/G_2.

EXAMPLE 2. Let g be a Cremona transformation defined by $g(X, Y, Z) = (g_1, g_2, g_3)$, where $n \geq 2$ and

$g_1 = XY^{n-1}Z + Z^{n+1}$, \quad $g_2 = Y^{n+1}$, \quad $g_3 = Y^nZ$.

Then $F(g) = \{P\}$ and the exceptional curves of g are Y and Z, but lines not passing through P are carried to curves of type II.

EXAMPLE 3. Let Δ be the curve defined by $XZ^{n-1} = Y^n$, where $n \geq 3$, and g a nonlinear automorphism of $\mathbb{P}^2 - \Delta$. Then $F(g) = \{P\}$ and $g(X)$ is of type I, whereas $f(L)$ is not of type I for any other general line L. For details see [3].

REFERENCES

DEPARTMENT OF MATHEMATICS, FACULTY OF GENERAL EDUCATION, NIIGATA UNIVERSITY, 950-21 NIIGATA, JAPAN