Flat covers and flat cotorsion modules
HTML articles powered by AMS MathViewer
- by Edgar Enochs
- Proc. Amer. Math. Soc. 92 (1984), 179-184
- DOI: https://doi.org/10.1090/S0002-9939-1984-0754698-X
- PDF | Request permission
Abstract:
It is not known whether modules over an arbitrary ring have flat covers, however for certain modules over commutative noetherian rings they can be shown to exist. These covers, in turn, have an interesting connection with flat cotorsion modules. A complete description of flat cotorsion modules analogous to that given by Harrison for torsion free, cotorsion abelian groups will be given. In this article, $R$ will denote a commutative noetherian ring.References
- Edgar E. Enochs, Injective and flat covers, envelopes and resolvents, Israel J. Math. 39 (1981), no. 3, 189–209. MR 636889, DOI 10.1007/BF02760849
- Edgar Enochs, Torsion free covering modules, Proc. Amer. Math. Soc. 14 (1963), 884–889. MR 168617, DOI 10.1090/S0002-9939-1963-0168617-7
- Bernhard Banaschewski, On coverings of modules, Math. Nachr. 31 (1966), 57–71. MR 191917, DOI 10.1002/mana.19660310106
- Edgar E. Enochs, Torsion free covering modules. II, Arch. Math. (Basel) 22 (1971), 37–52. MR 284463, DOI 10.1007/BF01222534
- Takeshi Ishikawa, On injective modules and flat modules, J. Math. Soc. Japan 17 (1965), 291–296. MR 188272, DOI 10.2969/jmsj/01730291
- Eben Matlis, Injective modules over Noetherian rings, Pacific J. Math. 8 (1958), 511–528. MR 99360
- Phillip Griffith, A representation theorem for complete local rings, J. Pure Appl. Algebra 7 (1976), no. 3, 303–315. MR 412176, DOI 10.1016/0022-4049(76)90056-6
- László Fuchs, Infinite abelian groups. Vol. I, Pure and Applied Mathematics, Vol. 36, Academic Press, New York-London, 1970. MR 0255673
- Eben Matlis, Cotorsion modules, Mem. Amer. Math. Soc. 49 (1964), 66. MR 178025
- L. Fuchs, Cotorsion modules over Noetherian hereditary rings, Houston J. Math. 3 (1977), no. 1, 33–46. MR 427380
- Michel Raynaud and Laurent Gruson, Critères de platitude et de projectivité. Techniques de “platification” d’un module, Invent. Math. 13 (1971), 1–89 (French). MR 308104, DOI 10.1007/BF01390094
- R. B. Warfield Jr., Purity and algebraic compactness for modules, Pacific J. Math. 28 (1969), 699–719. MR 242885
- D. K. Harrison, Infinite abelian groups and homological methods, Ann. of Math. (2) 69 (1959), 366–391. MR 104728, DOI 10.2307/1970188
Bibliographic Information
- © Copyright 1984 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 92 (1984), 179-184
- MSC: Primary 13C11; Secondary 13C05
- DOI: https://doi.org/10.1090/S0002-9939-1984-0754698-X
- MathSciNet review: 754698