Linear maps between certain nonseparable $C^{\ast }$-algebras
HTML articles powered by AMS MathViewer
- by Tadasi Huruya
- Proc. Amer. Math. Soc. 92 (1984), 193-197
- DOI: https://doi.org/10.1090/S0002-9939-1984-0754701-7
- PDF | Request permission
Abstract:
There exists a noninjective commutative ${C^ * }$-algebra $A$ such that every bounded linear map of any ${C^ * }$-algebra into $A$ is decomposed as a linear combination of positive linear maps.References
- Edward G. Effros and E. Christopher Lance, Tensor products of operator algebras, Adv. Math. 25 (1977), no. 1, 1–34. MR 448092, DOI 10.1016/0001-8708(77)90085-8
- Tadasi Huruya, Decompositions of completely bounded maps, Acta Sci. Math. (Szeged) 50 (1986), no. 1-2, 183–189. MR 862192
- Tadasi Huruya and Jun Tomiyama, Completely bounded maps of $C^{\ast }$-algebras, J. Operator Theory 10 (1983), no. 1, 141–152. MR 715564
- H. Elton Lacey, The isometric theory of classical Banach spaces, Die Grundlehren der mathematischen Wissenschaften, Band 208, Springer-Verlag, New York-Heidelberg, 1974. MR 0493279, DOI 10.1007/978-3-642-65762-7
- Richard I. Loebl, Contractive linear maps on $C^*$-algebras, Michigan Math. J. 22 (1975), no. 4, 361–366 (1976). MR 397423
- Vern I. Paulsen, Completely bounded maps on $C^{\ast }$-algebras and invariant operator ranges, Proc. Amer. Math. Soc. 86 (1982), no. 1, 91–96. MR 663874, DOI 10.1090/S0002-9939-1982-0663874-4
- Anthony L. Peressini, Ordered topological vector spaces, Harper & Row, Publishers, New York-London, 1967. MR 0227731
- R. R. Smith, Completely bounded maps between $C^{\ast }$-algebras, J. London Math. Soc. (2) 27 (1983), no. 1, 157–166. MR 686514, DOI 10.1112/jlms/s2-27.1.157
- Masamichi Takesaki, Theory of operator algebras. I, Springer-Verlag, New York-Heidelberg, 1979. MR 548728, DOI 10.1007/978-1-4612-6188-9 J. Tomiyama, Tensor products and projections of norm one in von Neumann algebras, Lecture Notes (mimeographed), University of Copenhagen, 1970. —, Recent development of the theory of completely bounded maps between ${C^ * }$-algebras (preprint).
- Sze Kai J. Tsui, Decompositions of linear maps, Trans. Amer. Math. Soc. 230 (1977), 87–112. MR 442702, DOI 10.1090/S0002-9947-1977-0442702-9
- A. W. Wickstead, Spaces of linear operators between partially ordered Banach spaces, Proc. London Math. Soc. (3) 28 (1974), 141–158. MR 333828, DOI 10.1112/plms/s3-28.1.141
- Gerd Wittstock, Ein operatorwertiger Hahn-Banach Satz, J. Functional Analysis 40 (1981), no. 2, 127–150 (German, with English summary). MR 609438, DOI 10.1016/0022-1236(81)90064-1
Bibliographic Information
- © Copyright 1984 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 92 (1984), 193-197
- MSC: Primary 46L05; Secondary 47B99
- DOI: https://doi.org/10.1090/S0002-9939-1984-0754701-7
- MathSciNet review: 754701