## Linear maps between certain nonseparable $C^{\ast }$-algebras

HTML articles powered by AMS MathViewer

- by Tadasi Huruya PDF
- Proc. Amer. Math. Soc.
**92**(1984), 193-197 Request permission

## Abstract:

There exists a noninjective commutative ${C^ * }$-algebra $A$ such that every bounded linear map of any ${C^ * }$-algebra into $A$ is decomposed as a linear combination of positive linear maps.## References

- Edward G. Effros and E. Christopher Lance,
*Tensor products of operator algebras*, Adv. Math.**25**(1977), no. 1, 1–34. MR**448092**, DOI 10.1016/0001-8708(77)90085-8 - Tadasi Huruya,
*Decompositions of completely bounded maps*, Acta Sci. Math. (Szeged)**50**(1986), no. 1-2, 183–189. MR**862192** - Tadasi Huruya and Jun Tomiyama,
*Completely bounded maps of $C^{\ast }$-algebras*, J. Operator Theory**10**(1983), no. 1, 141–152. MR**715564** - H. Elton Lacey,
*The isometric theory of classical Banach spaces*, Die Grundlehren der mathematischen Wissenschaften, Band 208, Springer-Verlag, New York-Heidelberg, 1974. MR**0493279**, DOI 10.1007/978-3-642-65762-7 - Richard I. Loebl,
*Contractive linear maps on $C^*$-algebras*, Michigan Math. J.**22**(1975), no. 4, 361–366 (1976). MR**397423** - Vern I. Paulsen,
*Completely bounded maps on $C^{\ast }$-algebras and invariant operator ranges*, Proc. Amer. Math. Soc.**86**(1982), no. 1, 91–96. MR**663874**, DOI 10.1090/S0002-9939-1982-0663874-4 - Anthony L. Peressini,
*Ordered topological vector spaces*, Harper & Row, Publishers, New York-London, 1967. MR**0227731** - R. R. Smith,
*Completely bounded maps between $C^{\ast }$-algebras*, J. London Math. Soc. (2)**27**(1983), no. 1, 157–166. MR**686514**, DOI 10.1112/jlms/s2-27.1.157 - Masamichi Takesaki,
*Theory of operator algebras. I*, Springer-Verlag, New York-Heidelberg, 1979. MR**548728**, DOI 10.1007/978-1-4612-6188-9
J. Tomiyama, - Sze Kai J. Tsui,
*Decompositions of linear maps*, Trans. Amer. Math. Soc.**230**(1977), 87–112. MR**442702**, DOI 10.1090/S0002-9947-1977-0442702-9 - A. W. Wickstead,
*Spaces of linear operators between partially ordered Banach spaces*, Proc. London Math. Soc. (3)**28**(1974), 141–158. MR**333828**, DOI 10.1112/plms/s3-28.1.141 - Gerd Wittstock,
*Ein operatorwertiger Hahn-Banach Satz*, J. Functional Analysis**40**(1981), no. 2, 127–150 (German, with English summary). MR**609438**, DOI 10.1016/0022-1236(81)90064-1

*Tensor products and projections of norm one in von Neumann algebras*, Lecture Notes (mimeographed), University of Copenhagen, 1970. —,

*Recent development of the theory of completely bounded maps between*${C^ * }$

*-algebras*(preprint).

## Additional Information

- © Copyright 1984 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**92**(1984), 193-197 - MSC: Primary 46L05; Secondary 47B99
- DOI: https://doi.org/10.1090/S0002-9939-1984-0754701-7
- MathSciNet review: 754701