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INVARIANTS RELATED TO THE BERGMAN KERNEL
OF A BOUNDED DOMAIN IN Cn

TADAYOSHI KANEMARU

ABSTRACT.   In this paper we introduce biholomorphic invariants using the

Bergman kernel function of a bounded domain in Cn.

Let K~d(z, t) be the Bergman kernel function of a bounded domain D in C™. As

is well known, Krj(z,t) admits the following transformation rule [1]:

Let D, A be bounded domains and w = w(z) a biholomorphic mapping from D

onto A. Then

(1) KD(z,t)=det-^KA(w,r)det-^        (r = w(t)).

Moreover,

d2
TD(z,t) = ^-^ logKD(z,t),

which is defined when Ko(z,t) ^ 0 and is uniquely determined by D, is a relative

invariant under biholomorphic mappings, that is,

In particular, the Bergman metric

ds2 = dz*To(z,z)dz

is invariant under biholomorphic mappings.

Throughout this paper we use the following notation: z = (zx, z2,..., zn)', w —

w(z) = (wi(z),w2(z),... ,wn(z))',

d       Í d      d d  \       dw _ dw       d

dz      \dzi'dz2^      'dznJ'     dz       dz      dz        '

where the symbols ', * and x stand for transposition, conjugated transposition and

Kronecker product, respectively.

The above invariants make it possible to introduce some other biholomorphic

invariants.

We define

KDt{Ptq){z,t) = KpD(z,t)(detTD(z,t)Y        (p,q> 0),

d2
TD,(p,q)(z,t) = -¿j^\ogKDÁPtq)(z,t).
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Then we have the following formulas [3]:

/    -x      (*    dr\p+q„ ,    _,/      dw\p+q
(3) KDÁp>q)(z,t)= ldet—J      KAÁPiq)(w,T)ldet—j

(4) TDÁP>q)(z,t) = I -^J   rAi(P)g)(w,7) ( -£) .

In particular,

da2D = ds2DÁpq) = dz*TDÁPtq)(z,z)dz

is a Kahler metric which is invariant under biholomorphic mappings.

We note that our metric do2 gives the Bergman metric for p = 1, g = 0, and

the Burbea metric for p = n + 1, g = 1 [2, 3].

Making use of (1) and (4), it can be shown that

j ,     » _ detTDÁPtq)(z,z)
JD,(P,q)(z,Z)- YrJ^Ï)

is a positive biholomorphic invariant.

Similarly, from (3) we also deduce that

KD,(p,q) (z, t)KD,(p,q) (t, Z)
HD,(p,q)(z,t)

KD,(p,q) (t, t)KD¿Ptq) (Z, z)

is a positive biholomorphic invariant. This extends the result in [5] for the special

case of p = 1 and q = 0.

We shall now define R(z,t) by

R(z,t) = yJdetTDi{Ptq)(t,t) \detSU(z,t)\ ,

where

U(z,t) = T-\pq)(t,t) I   TpÁPtq)(z,t)dz,

and S is a vector differential operator such that

S^ (aV'aV2'""'aV^j '    ^ = dsD,(P,q) = ^dz*TDÁp¡q)(z,z)dz.

Then we have the following

THEOREM.   R(z,t) is a nonnegative biholomorphic invariant.

PROOF.   Let D, A be bounded domains and w = w(z) be a biholomorphic

mapping from D onto A. Then from (4) we have

U(z,t) = T-\pq)(t,í) I   TDÁP>q)(z,t)dz

\~d~t)   *^™ '

aV

~dt

rtrïTi..(r.fl-(|)-,jr(*)-rw-.«i-ê*.
'1 pw

TA¿p,q) (T' f ) J        TA,(p,q) (W, f) dw,
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where r = w(t). Thus

U(z,t) = (dr/dt)-1U(w,f).

Differentiating this equation with respect to the metric do, we obtain

(5) Uin)^t)^£-nU(z,t) = (d
don    v ' '      \dt

It follows from (4) and (5) that

R(z,t) = \/detTDi(îM7)(f,t) \det SU (z,t)\

r/W, W,T  .

idet :A,(p,9) (r,r) det

-i

SU(w,r)

= sJdetTAÁPiq)(T,f)\detSU(w,f)\

= R(w,Y).

This concludes the proof.

REMARK. This result agrees with that in [4] when p = 1 and q = 0.
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