Skip to Main Content

Proceedings of the American Mathematical Society

Published by the American Mathematical Society, the Proceedings of the American Mathematical Society (PROC) is devoted to research articles of the highest quality in all areas of pure and applied mathematics.

ISSN 1088-6826 (online) ISSN 0002-9939 (print)

The 2020 MCQ for Proceedings of the American Mathematical Society is 0.85.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Invariants related to the Bergman kernel of a bounded domain in $\textbf {C}^{n}$
HTML articles powered by AMS MathViewer

by Tadayoshi Kanemaru PDF
Proc. Amer. Math. Soc. 92 (1984), 198-200 Request permission

Abstract:

In this paper we introduce biholomorphic invariants using the Bergman kernel function of a bounded domain in ${{\mathbf {C}}^n}$.
References
  • Stefan Bergman, The Kernel Function and Conformal Mapping, Mathematical Surveys, No. 5, American Mathematical Society, New York, N. Y., 1950. MR 0038439, DOI 10.1090/surv/005
  • J. Burbea, Minimum methods in Hilbert spaces with kernel function, Ph. D. Thesis, Stanford Univ., Stanford, Calif., 1971.
  • Tadayoshi Kanemaru, Invariant metrics on a bounded domain in $\textbf {C}^{n}$, Mem. Fac. Ed. Kumamoto Univ. Natur. Sci. 30 (1981), 1–4. MR 638971
  • Shigeo Ozaki and Yoshiaki Tashiro, Mapping function onto the representative domain and its properties, Sci. Rep. Tokyo Kyoiku Daigaku Sect. A 10 (1969), 164–167 (1969). MR 262544
  • Maciej Skwarczyński, Biholomorphic invariants related to the Bergman function, Dissertationes Math. (Rozprawy Mat.) 173 (1980), 59. MR 575756
Similar Articles
  • Retrieve articles in Proceedings of the American Mathematical Society with MSC: 32H10, 32H05
  • Retrieve articles in all journals with MSC: 32H10, 32H05
Additional Information
  • © Copyright 1984 American Mathematical Society
  • Journal: Proc. Amer. Math. Soc. 92 (1984), 198-200
  • MSC: Primary 32H10; Secondary 32H05
  • DOI: https://doi.org/10.1090/S0002-9939-1984-0754702-9
  • MathSciNet review: 754702