On the injectivity of the attenuated Radon transform
HTML articles powered by AMS MathViewer
- by Alexander Hertle
- Proc. Amer. Math. Soc. 92 (1984), 201-205
- DOI: https://doi.org/10.1090/S0002-9939-1984-0754703-0
- PDF | Request permission
Abstract:
We show that the attenuated (exponential) Radon transform ${R_\mu }$, where $\mu$ is assumed to be linear in the space variable, is injective on compactly supported distributions. Moreover, a limited angle reconstruction is possible and a hole theorem holds. We review the well-known special case of constant attenuation.References
- E. M. Cirka, Approximation of holomorphic functions on smooth manifolds in ${C^n}$, Math. USSR Sb. 7 (1969), 95-114.
- Sigurdur Helgason, The Radon transform, 2nd ed., Progress in Mathematics, vol. 5, Birkhäuser Boston, Inc., Boston, MA, 1999. MR 1723736, DOI 10.1007/978-1-4757-1463-0
- Andrew Markoe, Fourier inversion of the attenuated x-ray transform, SIAM J. Math. Anal. 15 (1984), no. 4, 718–722. MR 747431, DOI 10.1137/0515055
- Andrew Markoe and Eric Todd Quinto, An elementary proof of local invertibility for generalized and attenuated Radon transforms, SIAM J. Math. Anal. 16 (1985), no. 5, 1114–1119. MR 800800, DOI 10.1137/0516082
- Frank Natterer, On the inversion of the attenuated Radon transform, Numer. Math. 32 (1979), no. 4, 431–438. MR 542205, DOI 10.1007/BF01401046
- Eric Todd Quinto, The invertibility of rotation invariant Radon transforms, J. Math. Anal. Appl. 91 (1983), no. 2, 510–522. MR 690884, DOI 10.1016/0022-247X(83)90165-8
- Robert S. Strichartz, Radon inversion—variations on a theme, Amer. Math. Monthly 89 (1982), no. 6, 377–384, 420–423. MR 660917, DOI 10.2307/2321649
- Oleh J. Tretiak, Attenuated and exponential Radon transforms, Computed tomography (Cincinnati, Ohio, 1982) Proc. Sympos. Appl. Math., vol. 27, Amer. Math. Soc., Providence, R.I., 1982, pp. 25–33. MR 692051
- Oleh Tretiak and Charles Metz, The exponential Radon transform, SIAM J. Appl. Math. 39 (1980), no. 2, 341–354. MR 588505, DOI 10.1137/0139029
- John Wermer, Banach algebras and several complex variables, 2nd ed., Graduate Texts in Mathematics, No. 35, Springer-Verlag, New York-Heidelberg, 1976. MR 0394218
Bibliographic Information
- © Copyright 1984 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 92 (1984), 201-205
- MSC: Primary 44A15; Secondary 65R10, 92A07
- DOI: https://doi.org/10.1090/S0002-9939-1984-0754703-0
- MathSciNet review: 754703