Skip to Main Content

Proceedings of the American Mathematical Society

Published by the American Mathematical Society since 1950, Proceedings of the American Mathematical Society is devoted to shorter research articles in all areas of pure and applied mathematics.

ISSN 1088-6826 (online) ISSN 0002-9939 (print)

The 2020 MCQ for Proceedings of the American Mathematical Society is 0.85.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.


A wave equation with a possibly jumping nonlinearity
HTML articles powered by AMS MathViewer

by J. R. Ward PDF
Proc. Amer. Math. Soc. 92 (1984), 209-214 Request permission


Existence of a doubly periodic solution to a forced semilinear wave equation is established. The nonlinearity may "jump" across any finite number of eigenvalues of finite multiplicity.
  • Shui Nee Chow and Jack K. Hale, Methods of bifurcation theory, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 251, Springer-Verlag, New York-Berlin, 1982. MR 660633
  • Hana Lovicarová, Periodic solutions of a weakly nonlinear wave equation in one dimension, Czechoslovak Math. J. 19(94) (1969), 324–342. MR 247249
  • Jean Mawhin, Periodic solutions of nonlinear dispersive wave equations, Constructive methods for nonlinear boundary value problems and nonlinear oscillations (Proc. Conf., Math. Res. Inst., Oberwolfach, 1978), Internat. Ser. Numer. Math., vol. 48, Birkhäuser, Basel-Boston, Mass., 1979, pp. 102–109. MR 565644
  • —, Compacité, monotonie et convexité dans l’etude de problèmes aux limites semi-linéaires, Séminaire d’Analyse Moderne, No. 19, Univ. de Sherbrooke, 1981. J. Mawhin and J. Ward, Asymptotic nonuniform non-resonance conditions in the periodic Dirichlet problem for semi-linear wave equations, J. Math. Pures Appl. (to appear). —, Nonuniform non-resonance conditions in the periodic-Dirichlet problem for semi-linear wave equations with jumping nonlinearities (to appear).
  • Michel Willem, Periodic solutions of wave equations with jumping nonlinearities, J. Differential Equations 36 (1980), no. 1, 20–27. MR 571124, DOI 10.1016/0022-0396(80)90072-8
Similar Articles
  • Retrieve articles in Proceedings of the American Mathematical Society with MSC: 35B10, 35L70
  • Retrieve articles in all journals with MSC: 35B10, 35L70
Additional Information
  • © Copyright 1984 American Mathematical Society
  • Journal: Proc. Amer. Math. Soc. 92 (1984), 209-214
  • MSC: Primary 35B10; Secondary 35L70
  • DOI:
  • MathSciNet review: 754705