Asymptotics of differential systems with deviating arguments
HTML articles powered by AMS MathViewer
- by William F. Trench
- Proc. Amer. Math. Soc. 92 (1984), 219-224
- DOI: https://doi.org/10.1090/S0002-9939-1984-0754707-8
- PDF | Request permission
Abstract:
Conditions are given which imply that a system $X’(t) = F[t,X(g(t))]$ has a solution with some components which approach given limits with specified orders of convergence as $t \to \infty$, while the other components have specified orders of magnitude. The integral smallness conditions on $F$ permit conditional convergence of some of the improper integrals that occur, and it is not required that ${\lim _{t \to \infty }}g(t) = \infty$.References
- Thomas G. Hallam, Asymptotic integrations of second order differential equations with integrable coefficients, SIAM J. Appl. Math. 19 (1970), 430–439. MR 269935, DOI 10.1137/0119041
- Thomas G. Hallam, Asymptotic integration of a nonhomogeneous differential equation with integrable coefficients, Czechoslovak Math. J. 21(96) (1971), 661–671. MR 291573
- Yuichi Kitamura and Takaŝi Kusano, On the oscillation of a class of nonlinear differential systems with deviating argument, J. Math. Anal. Appl. 66 (1978), no. 1, 20–36. MR 513483, DOI 10.1016/0022-247X(78)90267-6
- Yuichi Kitamura and Takaŝi Kusano, Oscillation and a class of nonlinear differential systems with general deviating arguments, Nonlinear Anal. 2 (1978), no. 5, 537–551. MR 512150, DOI 10.1016/0362-546X(78)90002-0
- William F. Trench, Systems of differential equations subject to mild integral conditions, Proc. Amer. Math. Soc. 87 (1983), no. 2, 263–270. MR 681832, DOI 10.1090/S0002-9939-1983-0681832-1
Bibliographic Information
- © Copyright 1984 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 92 (1984), 219-224
- MSC: Primary 34K25
- DOI: https://doi.org/10.1090/S0002-9939-1984-0754707-8
- MathSciNet review: 754707