COMPLETELY BOUNDED HOMOMORPHISMS
OF OPERATOR ALGEBRAS

VERN I. PAULSEN1

ABSTRACT. Let \(A \) be a unital operator algebra. We prove that if \(\rho \) is a completely bounded, unital homomorphism of \(A \) into the algebra of bounded operators on a Hilbert space, then there exists a similarity \(S \), with \(\|S^{-1}\| \cdot \|S\| = \|\rho\|_{cb} \), such that \(S^{-1}\rho(S)S \) is a completely contractive homomorphism. We also show how Rota's theorem on operators similar to contractions and the result of Sz.-Nagy and Foias on the similarity of \(\rho \)-dilations to contractions can be deduced from this result.

1. Introduction. In [6] we proved that a homomorphism \(\rho \) of an operator algebra is similar to a completely contractive homomorphism if and only if \(\rho \) is completely bounded. It was known that if \(S \) is such a similarity, then \(\|S\| \cdot \|S^{-1}\| \geq \|\rho\|_{cb} \). However, at the time we were unable to determine if one could choose the similarity such that \(\|S\| \cdot \|S^{-1}\| = \|\rho\|_{cb} \). When the operator algebra is a \(C^* \)-algebra then Haagerup had shown [3] that such a similarity could be chosen. The purpose of the present note is to prove that for a general operator algebra, there exists a similarity \(S \) such that \(\|S\| \cdot \|S^{-1}\| = \|\rho\|_{cb} \).

Completely contractive homomorphisms are central to the study of the representation theory of operator algebras, since they are precisely the homomorphisms that can be dilated to a \(* \)-representation on some larger Hilbert space of any \(C^* \)-algebra which contains the operator algebra. For \(C^* \)-algebras the sets of contractive homomorphisms, completely contractive homomorphisms, and \(* \)-homomorphisms coincide.

The main result of this paper also gives, at least, a theoretical answer to certain minimization problems. Suppose, for example, that \(T \) is an operator on a Hilbert space that is similar to a contraction; then \(\inf\{\|S\| \cdot \|S^{-1}\| : \|S^{-1}TS\| \leq 1\} \) is attained and equal to \(\|\rho\|_{cb} \), where \(\rho \) is the homomorphism of the disk algebra defined by \(\rho(f) = f(T) \). An extensive study of this infimum was undertaken in [5], and it was studied in [2] for certain Toeplitz operators.

Finally, we end this note by showing how Rota's theorem [7] that every operator with spectral radius less than 1 is similar to a contraction, and the result of Sz.-Nagy and Foias [8] that every operator with a \(\rho \)-dilation is similar to a contraction, can be easily deduced from our result. These new proofs give a unified principle of estimating the above infimum for both of these classes of operators.

2. The similarity theorem. Let \(H \) denote a Hilbert space, \(L(H) \) the bounded linear operators on \(H \), \(B \) a unital \(C^* \)-algebra, and let \(A \) be a subalgebra of \(B \) containing the unit of \(B \). We call \(A \) an operator algebra. We let \(M_n \) denote the
Given a map $\rho: A \to L(H)$, we define maps $\rho_n: M_n(A) \to L(H + \cdots + H)$ (n copies) by $\rho_n((a_{ij})) = (\rho(a_{ij}))$ for (a_{ij}) in $M_n(A)$. We call ρ completely bounded provided that $\sup_n \|\rho_n\|$ is finite and we let $\|\rho\|_{cb}$ denote this supremum. If $\|\rho\|_{cb} \leq 1$, then we say that ρ is completely contractive. By [1], a homomorphism ρ of an operator algebra A into $L(H)$ is completely contractive if and only if it can be dilated to B, that is, if and only if there exists a $*$-representation $\Pi: B \to L(K)$ for some Hilbert space K, containing H, such that $\rho(a) = P\Pi(a)\Pi I_H$ for all a in A, where P denotes the projection of K onto H.

THEOREM. Let A be an operator algebra contained in a C^*-algebra B, and let $\rho: A \to L(H)$ be a unital, completely bounded homomorphism. Then there exists an invertible operator S, with $\|S\| \cdot \|S^{-1}\| \leq \|\rho\|_{cb}$ such that $S^{-1}\rho(-)S$ is a completely contractive homomorphism.

PROOF. By the generalization of Stinespring’s Theorem [6, Theorem 2.8] and by [6, Theorem 2.4], there exists a Hilbert space K, a $*$-homomorphism $\Pi: B \to L(K)$, and two bounded operators $V_i: H \to K$, $i = 1, 2$, with $\|V_1\| \cdot \|V_2\| = \|\rho\|_{cb}$ such that $\rho(a) = V_1^*\Pi(a)V_2$, for a in A.

Following [4, p. 1030], for $h \in H$, we define

$$\|h\| = \inf \left\{ \left\| \sum \Pi(a_i)V_2h_i \right\| : \sum \rho(a_i)h_i = h, \ a_i \in A, \ h_i \in H \right\},$$

where the infimum is taken over finite sums. By a minor modification of the arguments in [4, p. 1030], one obtains that $|\cdot|$ is a norm on H and $(H, |\cdot|)$ is a Hilbert space.

If $h = \sum \rho(a_i)h_i$, then

$$\|h\| = \left\| \sum \rho(a_i)h_i \right\| = \left\| \sum V_1^*\Pi(a_i)V_2h_i \right\| \leq \|V_1^*\| \cdot \left\| \sum \Pi(a_i)V_2h_i \right\|.$$

Thus, $\|h\| \leq \|V_1^*\| \cdot |h|$. Similarly, $\rho(1)h = h$ yields $|h| \leq \|V_2\| \cdot \|h\|$. Thus, if we define $S: (H, |\cdot|) \to (H, \|\cdot\|)$ to be the identity, then S is invertible and

$$\|S^{-1}\| \cdot \|S\| \leq \|V_1^*\| \cdot \|V_2\| = \|\rho\|_{cb}.$$

To complete the proof of the theorem it will be sufficient to prove that $S^{-1}\rho(-)S$ is completely contractive, since then $\|S^{-1}\| \cdot \|S\| \geq \|\rho\|_{cb}$ necessarily.

Let $a \in A$, and let $h = \sum \rho(a_i)h_i$. Then

$$|\rho(a)h| \leq \left\| \sum \Pi(aa_i)V_2h_i \right\| \leq \|a\| \cdot \left\| \sum \Pi(a_i)V_2h_i \right\|,$$

so $|\rho(a)h| \leq \|a\| \cdot |h|$. Thus, we obtain that $S^{-1}\rho(-)S$ is contractive.

To see that $S^{-1}\rho(-)S$ is completely contractive, fix an integer n, let $\hat{H} = H + \cdots + H$ (n copies) and let $|\cdot|_n$ denote the norm on \hat{H} given by $|\hat{h}|_n = |h_1|^2 + \cdots + |h_n|^2$, $\hat{h} = (h_1, \ldots, h_n)$. We must prove that if $\hat{a} = (a_{i,j}) \in M_n(A)$ then $|\rho_n(\hat{a})\hat{h}|_n \leq \|\hat{a}\| \cdot |\hat{h}|_n$ for $\hat{h} \in \hat{H}$.

To this end, consider $\rho_n: M_n(A) \to L(\hat{H})$ where \hat{H} is endowed with its old norm, i.e., $\|\hat{h}\|^2 = |h_1|^2 + \cdots + |h_n|^2$. Since ρ is completely bounded, ρ_n will...
be completely bounded and, in fact, \(\|\rho_n\|_{cb} = \|\rho\|_{cb} \). Thus, by the first part of our argument we may endow \(\hat{H} \) with yet another norm \(|\cdot|_{(n)} \) such that \(\rho_n(\cdot) \) is contractive in this norm, i.e., \(|\rho_n(\hat{a})\hat{h}|_{(n)} \leq \|\hat{a}\| \cdot |\hat{h}|_{(n)} \).

To construct \(|\cdot|_{(n)} \), all we need is a Stinespring representation of \(\rho_n \). For such a representation, consider \(\Pi_n: M_n(B) \to L(\hat{K}) \), \(\hat{K} = K + \cdots + K \) (\(n \) copies) and \(\hat{V}_i: \hat{H} \to \hat{K} \) defined by \(\hat{V}_i(h_1, \ldots, h_n) = (V_i h_1, \ldots, V_i h_n) \), \(i = 1, 2 \). It is easily seen that \(\rho_n(\hat{a}) = \hat{V}_1 \Pi_n(\hat{a}) \hat{V}_2 \) for \(\hat{a} \in M_n(A) \). Thus, we may set \(|\hat{h}|_{(n)} = \inf \left\{ \left\| \sum_n \Pi_n(\hat{a}_i) \hat{V}_2 \hat{h}_i \right\| : \sum \rho_n(\hat{a}_i) \hat{h}_i = \hat{h} \} \), and \(\rho_n \) will be contractive in this norm.

We claim that with these choices \(|\hat{h}|_{(n)} = |\hat{h}|_n \), which will complete the proof of the theorem.

To prove the claim fix \(\varepsilon > 0 \), let \(\hat{a}_k = (a_{i,j,k}) \in M_n(A) \), \(\hat{h}_k = (h_{x,k}, \ldots, h_{n,k}) \in \hat{H} \) be such that, \(\sum \rho_n(\hat{a}_k) \hat{h}_k = \hat{h} \), and \(|\hat{h}|^2_{(n)} + \varepsilon \geq \left\| \sum_n \Pi_n(\hat{a}_k) \hat{V}_2 \hat{h}_k \right\|^2 \). We then have that
\[
|\hat{h}|^2_{(n)} + \varepsilon \geq \sum_{i=1}^n \left\| \sum_{j=1}^n \Pi_n(a_{i,j,k}) \hat{V}_2 \hat{h}_{j,k} \right\|^2 \geq \sum_{i=1}^n |\hat{h}_i|^2 = |\hat{h}|^2_n,
\]
and so \(|\hat{h}|_{(n)} \geq |\hat{h}|_n \). The other inequality follows similarly. This completes the proof of the theorem.

To see how Rota’s Theorem [7] follows from the above, let \(T \) be an operator whose spectrum is contained in the open unit disk. Recall that by the Riesz functional calculus, if \(f(z) \) is a polynomial, then
\[
f(T) = \frac{1}{2\pi i} \int_{\Gamma} f(z)(T - zI)^{-1} \, dz,
\]
where \(\Gamma = \{z: |z| = 1\} \). Setting \(\rho(f) = f(T) \), and letting \(\|f\| = \sup\{|f(z)|: |z| = 1\} \), we have that \(\|\rho(f)\| \leq K\|f\| \), where
\[
K = \frac{1}{2\pi} \int_{\Gamma} \|(T - zI)^{-1}\| \, d|z|.
\]

Thus, \(\rho \) extends to a bounded homomorphism of the disk algebra. To see that \(\rho \) is completely bounded (here we are thinking of the disk algebra as a subalgebra of the \(C^* \)-algebra of continuous functions on the circle), observe that for an \(n \times n \) matrix of polynomials,
\[
(f_{i,j}(T)) = \frac{1}{2\pi i} \int (f_{i,j}(z)(T - zI^{-1})) \, dz
\]
\[
= \frac{1}{2\pi i} \int (f_{i,j}(z)) (\hat{T} - z\hat{I}) \, dz,
\]
where \(\hat{T} \) is the direct sum of \(n \) copies of \(T \). Since \(\|(T - zI)^{-1}\| = \|\hat{T} - z\hat{I}\|^{-1} \),
we have
\[
\|(f_{i,j}(T))\| \leq K\|(f_{i,j}(z))\|,
\]
and so \(\rho \) is completely bounded with \(\|\rho\|_{cb} \leq K \). Hence, there is an invertible operator \(S \) such that \(\|S^{-1}\| \cdot \|S\| \leq K \) and \(\|S^{-1}TS\| = \|S^{-1}\rho(z)S\| \leq 1 \).
As a second application we mention the ρ-dilations considered in Sz.-Nagy and Foias [8]. An operator T in $L(H)$ has a ρ-dilation if there is a unitary U acting on K, H contained in K, such that $T^n = \rho P U^n |_H$, $n \geq 1$, where P is the projection of K onto H. For f in the disk algebra, define $\phi(f) = Pf(U)|_H$, and $\Psi(f) = f(0) \cdot I$. One easily sees that ϕ and Ψ are complete contractions.

Finally, setting $\gamma(f) = f(T) = \rho \phi(f) + (1-\rho) \Psi(f)$, we have that γ is a completely bounded homomorphism, and $\|\gamma\|_{cb} \leq 2\rho - 1$. Thus, there is an invertible S, $\|S^{-1}\| \cdot \|S\| \leq 2\rho - 1$, such that $S^{-1}TS$ is a contraction.

References

5. ———, Distortion coefficients for crypto-contractions, Linear Algebra Appl. 18 (1977), 229–256.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF HOUSTON, HOUSTON, TEXAS 77004