Completely bounded homomorphisms of operator algebras
HTML articles powered by AMS MathViewer
- by Vern I. Paulsen
- Proc. Amer. Math. Soc. 92 (1984), 225-228
- DOI: https://doi.org/10.1090/S0002-9939-1984-0754708-X
- PDF | Request permission
Abstract:
Let $A$ be a unital operator algebra. We prove that if $\rho$ is a completely bounded, unital homomorphism of $A$ into the algebra of bounded operators on a Hilbert space, then there exists a similarity $S$, with $\left \| {{S^{ - 1}}} \right \| \cdot \left \| S \right \| = {\left \| \rho \right \|_{cb}}$, such that ${S^{ - 1}}\rho ( \cdot )S$ is a completely contractive homomorphism. We also show how Rota’s theorem on operators similar to contractions and the result of Sz.-Nagy and Foias on the similarity of $\rho$-dilations to contractions can be deduced from this result.References
- William B. Arveson, Subalgebras of $C^{\ast }$-algebras, Acta Math. 123 (1969), 141–224. MR 253059, DOI 10.1007/BF02392388
- Douglas N. Clark, Toeplitz operators and $k$-spectral sets, Indiana Univ. Math. J. 33 (1984), no. 1, 127–141. MR 726109, DOI 10.1512/iumj.1984.33.33006
- Uffe Haagerup, Solution of the similarity problem for cyclic representations of $C^{\ast }$-algebras, Ann. of Math. (2) 118 (1983), no. 2, 215–240. MR 717823, DOI 10.2307/2007028
- John A. R. Holbrook, Spectral dilations and polynomially bounded operators, Indiana Univ. Math. J. 20 (1970/71), 1027–1034. MR 284845, DOI 10.1512/iumj.1971.20.20098
- John A. R. Holbrook, Distortion coefficients for cryptocontractions, Linear Algebra Appl. 18 (1977), no. 3, 229–256. MR 482292, DOI 10.1016/0024-3795(77)90054-4
- Vern I. Paulsen, Every completely polynomially bounded operator is similar to a contraction, J. Funct. Anal. 55 (1984), no. 1, 1–17. MR 733029, DOI 10.1016/0022-1236(84)90014-4
- Gian-Carlo Rota, On models for linear operators, Comm. Pure Appl. Math. 13 (1960), 469–472. MR 112040, DOI 10.1002/cpa.3160130309
- Béla Sz.-Nagy and Ciprian Foiaş, Harmonic analysis of operators on Hilbert space, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York; Akadémiai Kiadó, Budapest, 1970. Translated from the French and revised. MR 0275190
Bibliographic Information
- © Copyright 1984 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 92 (1984), 225-228
- MSC: Primary 47D25; Secondary 46L05
- DOI: https://doi.org/10.1090/S0002-9939-1984-0754708-X
- MathSciNet review: 754708