On the second dual of the Lorentz space
HTML articles powered by AMS MathViewer
- by Pratibha G. Ghatage and Brian M. Scott
- Proc. Amer. Math. Soc. 92 (1984), 239-244
- DOI: https://doi.org/10.1090/S0002-9939-1984-0754711-X
- PDF | Request permission
Abstract:
If $\phi (t) = {t^{1/p}}(p > 1)$ and $(X,\mathcal {S},\mu )$ is a completely nonatomic finite measure space, then the dual of the Lorentz space ${N_\phi }$ is denoted by ${M_\phi }$ and the closure of the simple functions in ${M_\phi }$ by $M_\phi ^0$. It is known that ${(M_\phi ^0)^ * } = {N_\phi }$. In this note we show that given a positive number $\beta < 1$ it is possible to construct a set of contractive embeddings of $({l_\infty }/{c_0})$ into ${({M_\phi }/M_\phi ^0)^ * }$, each of which is bounded below by $M = M(\beta ) \to 1\;{\text {as}}\;\beta \to {{\text {0}}^ + }$. The union of the ranges of these embeddings is a total set in ${({M_\phi }/M_\phi ^0)^ * }$.References
- Mahlon M. Day, Normed linear spaces, 3rd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 21, Springer-Verlag, New York-Heidelberg, 1973. MR 0344849
- Pratibha G. Ghatage, The Lorentz space as a dual space, Proc. Amer. Math. Soc. 91 (1984), no. 1, 92–94. MR 735571, DOI 10.1090/S0002-9939-1984-0735571-X
- M. S. Steigerwalt and A. J. White, Some function spaces related to $L_{p}$ spaces, Proc. London Math. Soc. (3) 22 (1971), 137–163. MR 279582, DOI 10.1112/plms/s3-22.1.137
Bibliographic Information
- © Copyright 1984 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 92 (1984), 239-244
- MSC: Primary 46E30
- DOI: https://doi.org/10.1090/S0002-9939-1984-0754711-X
- MathSciNet review: 754711