Factorization of probability measures and absolutely measurable sets
HTML articles powered by AMS MathViewer
- by David Blackwell and Ashok Maitra
- Proc. Amer. Math. Soc. 92 (1984), 251-254
- DOI: https://doi.org/10.1090/S0002-9939-1984-0754713-3
- PDF | Request permission
Abstract:
We find necessary and sufficient conditions for a separable metric space $Y$ to possess the property that for any measurable space $\left ( {X,\mathcal {A}} \right )$ and probability measure $P$ on $X \times Y$, $P$ can be factored.References
- Miloslav Jiřina, Conditional probabilities on strictly separable $\sigma$-algebras, Czechoslovak Math. J. 4(79) (1954), 372–380 (Russian, with English summary). MR 69416
- K. Kuratovskiĭ, Topologiya. Tom 2, Izdat. “Mir”, Moscow, 1969 (Russian). Translated from the English by M. Ja. Antonovskiĭ. MR 0259836
- E. Marczewski, On compact measures, Fund. Math. 40 (1953), 113–124. MR 59994, DOI 10.4064/fm-40-1-113-124
- Jan K. Pachl, Disintegration and compact measures, Math. Scand. 43 (1978/79), no. 1, 157–168. MR 523833, DOI 10.7146/math.scand.a-11771
Bibliographic Information
- © Copyright 1984 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 92 (1984), 251-254
- MSC: Primary 28A50; Secondary 60A10
- DOI: https://doi.org/10.1090/S0002-9939-1984-0754713-3
- MathSciNet review: 754713