Dieudonné-Schwartz theorem in inductive limits of metrizable spaces
HTML articles powered by AMS MathViewer
- by Jing Hui Qiu
- Proc. Amer. Math. Soc. 92 (1984), 255-257
- DOI: https://doi.org/10.1090/S0002-9939-1984-0754714-5
- PDF | Request permission
Abstract:
The Dieudonné-Schwartz Theorem for bounded sets in strict inductive limits does not hold for general inductive limits $E = {\operatorname {ind}}\lim {{\text {E}}_{\text {n}}}$. It does if each $\bar E_n^E \subset {E_{m\left ( n \right )}}$ and all the ${E_n}$ are Fréchet spaces. A counterexample shows that this condition is not necessary. When $E$ is a strict inductive limit of metrizable spaces ${E_n}$, this condition is equivalent to the condition that each bounded set in $E$ is contained in some ${E_n}$.References
- J. Horváth, Topological vector spaces and distributions, Vol. 1, Addision-Wesley, Reading, Mass., 1966.
- J. Kučera and K. McKennon, Bounded sets in inductive limits, Proc. Amer. Math. Soc. 69 (1978), no. 1, 62–64. MR 463937, DOI 10.1090/S0002-9939-1978-0463937-1
- J. Kučera and C. Bosch, Dieudonné-Schwartz theorem on bounded sets in inductive limits. II, Proc. Amer. Math. Soc. 86 (1982), no. 3, 392–394. MR 671201, DOI 10.1090/S0002-9939-1982-0671201-1
- A. P. Robertson and W. J. Robertson, Topological vector spaces, Cambridge Tracts in Mathematics and Mathematical Physics, No. 53, Cambridge University Press, New York, 1964. MR 0162118
- J. Kučera and K. McKennon, Dieudonné-Schwartz theorem on bounded sets in inductive limits, Proc. Amer. Math. Soc. 78 (1980), no. 3, 366–368. MR 553378, DOI 10.1090/S0002-9939-1980-0553378-X
Bibliographic Information
- © Copyright 1984 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 92 (1984), 255-257
- MSC: Primary 46A05
- DOI: https://doi.org/10.1090/S0002-9939-1984-0754714-5
- MathSciNet review: 754714