SINGULAR FUNCTIONS AND DIVISION IN $H^\infty + C$

PAMELA B. GORKIN

Abstract. In this paper it is shown that for each inner function u, there exists a singular inner function S which is divisible in $H^\infty + C$ by all positive powers of u.

Introduction. In this paper, we continue the study of division in $H^\infty + C$ begun by Guillory and Sarason. We let H^∞ denote the space of boundary functions for bounded analytic functions in the open unit disk D and C denote the space of continuous, complex valued functions on ∂D. We let L^∞ denote the usual Lebesgue space with respect to Lebesgue measure. It is well known that $H^\infty + C$ is a closed subalgebra of L^∞. The space H^∞ (or $H^\infty + C$) will be identified with its analytic (or harmonic) extension to D.

C. Guillory and D. Sarason began the study of division in $H^\infty + C$ by determining a criterion for deciding whether an $H^\infty + C$ function is divisible by all positive powers of a unimodular $H^\infty + C$ function [3]. In the same paper, the question of finding, for each inner function u, a singular inner function which is divisible in $H^\infty + C$ by all positive powers of u, is posed. We shall answer this question affirmatively. The techniques used to prove this are a combination of the techniques used in [1 and 3]. As in [1], our main tools are interpolating Blaschke products and the Chang-Marshall Theorem. A sequence $\{z_n\}$ of distinct points in D is called an interpolating sequence if there exists $\delta > 0$ such that

$$\prod_{j \neq k} \left| \frac{z_k - z_j}{1 - \bar{z}_j z_k} \right| \geq \delta > 0, \quad k = 1, 2, 3, \ldots$$

It is well known [4, p. 199] that if a sequence of points $\{z_n\}$ of the open unit disk is an interpolating sequence, then

$$(*) \quad \sum_{k=1}^{\infty} \left(1 - |z_k|^2 \right) < \infty.$$

A Blaschke product with a zero sequence which is an interpolating sequence is called an interpolating Blaschke product.

The Chang-Marshall Theorem states that every closed subalgebra of L^∞ which contains H^∞ is generated by H^∞ and some collection of conjugates of interpolating Blaschke products.

Received by the editors October 26, 1983.

1980 Mathematics Subject Classification. Primary 46J15.

©1984 American Mathematical Society

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

268
From the proof of the Chang-Marshall Theorem, it is easy to show that the closed subalgebra generated by H^∞ and the conjugate of one inner function is actually equal to the closed algebra generated by H^∞ and the conjugate of a single interpolating Blaschke product. We refer the reader to [2, Chapter IX].

The Main Theorem. In this section we prove the following theorem:

Main Theorem. For each inner function u, there exists a singular inner function which is divisible in $H^\infty + C$ by all positive powers of u.

The proof of the Main Theorem requires three lemmas. Lemmas 1 and 2 below reduce the problem to the case in which u is an interpolating Blaschke product. We then use Lemma 3 to complete the proof of the Main Theorem.

Lemma 1. Let u be an inner function. There exists an interpolating Blaschke product b such that if an inner function v is divisible in $H^\infty + C$ by all positive powers of b, then v is divisible in $H^\infty + C$ by all positive powers of u.

Proof. It follows from (the proof of) the Chang-Marshall Theorem that there exists an interpolating Blaschke product b such that the closed subalgebra of L^∞ generated by H^∞ and \bar{u} is actually equal to the closed subalgebra generated by H^∞ and the conjugate of the interpolating Blaschke product b. Let v be an inner function divisible by all positive powers of b. It is easy to see that v must be divisible in $H^\infty + C$ by all positive powers of u.

The maximal ideal space of H^∞, denoted $M(H^\infty)$, is the set of nonzero complex multiplicative linear functionals on H^∞. With the weak-* topology, $M(H^\infty)$ is a compact Hausdorff space. We identify \mathbb{D} with its natural image in $M(H^\infty)$.

Lemma 2. Let b be an interpolating Blaschke product with zero sequence $\{z_n\}$. If S is a singular inner function such that $S(z_n) \to 0$, then S is divisible by all positive powers of b.

Proof. For each positive integer n, let g_n be an analytic nth root of S. Thus $g_n^n = S$, $g_n \in H^\infty$ and, for each n, $g_n(z_m) \to 0$ as $m \to \infty$. Suppose $m \in M(H^\infty) \sim \mathbb{D}$ and $m(b) = 0$. By [4, p. 205], we have $m \in \{\overline{z_n}\}$. Hence $m(g_n) = 0$. It follows from Lemma 1 of [1] that $g_n \bar{b} \in H^\infty + C$. Thus $g_n^n \bar{b}^n \in H^\infty + C$ for each n and $S\bar{b}^n \in H^\infty + C$, as desired.

The techniques used to construct the singular function S are similar to those used in [3]. The construction will be done on the upper half-plane.

Lemma 3. Let $\{z_n\}$ be an interpolating Blaschke sequence. There exists a singular inner function S satisfying $S(z_n) \to 0$.

Proof. If $A = \{n: \text{Re} z_n \geq 0\}$ is finite, then we need only consider the set $\{z_n\}$ such that $\text{Re} z_n < 0$. Assume there are infinitely many z_n such that $\text{Re} z_n \geq 0$. For those n, let $w_n = i[(1 - z_n)/(1 + z_n)]$. Then $\text{Im} w_n > 0$ and, from (\ast), we have $\sum_n \text{Im} w_n < \infty$. Let $\{b_n\}$ be a sequence of positive real numbers such that...
\[\sum_{n} b_n(\text{Im } w_n) < \infty \] and \[\lim_{n \to \infty} b_n = \infty. \] Let \(w'_n = \text{Re } w_n + ib_n \text{Im } w_n \) and \(t_n = \text{Re } w_n. \) Finally, let \(u \) be the Poisson integral of the measure \(\mu = \sum_n (\text{Im } w_n) \delta_{t_n}, \) that is
\[
u(t) \sum \frac{b_n(\text{Im } w_n)}{(x-t)^2 + y^2}.
\]
Then
\[
(a) \int_{-\infty}^{\infty} \frac{d\mu(t)}{1 + t^2} = \sum \frac{b_n \text{Im } w_n}{1 + (t_n)^2}
\]
and since \(\sum b_n \text{Im } w_n/(1 + t_n^2) \leq \sum b_n \text{Im } w_n \) we have \(\sum b_n \text{Im } w_n/(1 + t_n^2) < \infty. \)

(b) \[
\begin{aligned}
\frac{u(\text{Re } w_m, \text{Im } w_m)}{(\text{Re } w_m - t_n)^2 + (\text{Im } w_m)^2} &= \frac{b_n(\text{Im } w_n)(\text{Im } w_m)}{(\text{Re } w_m - t_n)^2 + (\text{Im } w_m)^2} = b_m
\end{aligned}
\]

Let \(\tilde{u} \) be the harmonic conjugate of \(u, \) and let \(S_1 = e^{-(u + i\tilde{u})} \) denote the singular inner function for the upper half-plane corresponding to \(\mu. \) Then \(|S_1(w_n)| = |e^{-u(w_m)}| < e^{-b_m/2}. \) Hence \(S_1(w_m) \to 0 \) as \(m \to \infty. \) Letting \(S_2(z) = S_1((i - z)/(i + z)) \) we obtain a singular inner function such that \(S_2(z_n) \to 0 \) as \(n \to \infty \) and \(n \in A. \)

Suppose now that \{ \(n: \text{Re } z_n < 0 \) \} is infinite. Let \(w_n = i((1 + z_n)/(1 - z_n)) \) for all \(n \) such that \(\text{Re } z_n < 0. \) Again, \(\text{Im } w_n > 0 \) and \(\sum \text{Im } w_n < \infty. \) Repeating the process above, we obtain a singular inner function \(S_3 \) such that \(z_n \) with \(\text{Re } z_n < 0 \) we have \(S_3(z_n) \to 0 \) as \(n \to \infty. \) If we let \(S = S_2S_3, \) then \(S \) satisfies the desired conditions.

To establish the Main Theorem, let \(u \) be an inner function. Choose an interpolating Blaschke product \(b \) satisfying the conditions of Lemma 1. Use Lemma 3 to obtain a singular function \(S \) satisfying the conditions of Lemma 2. Then \(b^nS \in H^\infty + C \) for all positive integers \(n. \) By Lemma 1 we see that \(S \) is divisible by all positive powers of \(u. \)

REFERENCES

Department of Mathematics, Bucknell University, Lewisburg, Pennsylvania 17837