Adding a $2$-handle to a $3$-manifold: an application to property $R$
HTML articles powered by AMS MathViewer
- by William Jaco
- Proc. Amer. Math. Soc. 92 (1984), 288-292
- DOI: https://doi.org/10.1090/S0002-9939-1984-0754723-6
- PDF | Request permission
Abstract:
A sufficient condition is given for adding a $2$-handle to a $3$-manifold and obtaining a $3$-manifold with incompressible boundary. The main result is then used to show that a knot in the $3$-sphere admitting a partially unknotted spanning surface has Property $R$.References
- Robion Kirby and Paul Melvin, Slice knots and property $\textrm {R}$, Invent. Math. 45 (1978), no.ย 1, 57โ59. MR 467754, DOI 10.1007/BF01406223
- Howard Lambert, Longitude surgery on genus $1$ knots, Proc. Amer. Math. Soc. 63 (1977), no.ย 2, 359โ362. MR 438322, DOI 10.1090/S0002-9939-1977-0438322-8
- Louise E. Moser, On the impossibility of obtaining $S^{2}\times S^{1}$ by elementary surgery along a knot, Pacific J. Math. 53 (1974), 519โ523. MR 358756, DOI 10.2140/pjm.1974.53.519 J. Przytycki, Incompressible surfaces in $3$-manifolds, Thesis, Columbia University, 1981.
Bibliographic Information
- © Copyright 1984 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 92 (1984), 288-292
- MSC: Primary 57N10; Secondary 57M25
- DOI: https://doi.org/10.1090/S0002-9939-1984-0754723-6
- MathSciNet review: 754723