A CHARACTERIZATION OF ABSOLUTELY C^*-SMOOTH CONTINUA1

C. WAYNE PROCTOR

ABSTRACT. A continuum X is proven to be absolutely C^*-smooth if and only if each compactification Y of the half line $[0, \infty)$ with remainder X has the property that the space of all subcontinua of Y is a compactification of the space of all subcontinua of $[0, \infty)$.

1. Introduction. After A. Lelek [8] introduced the notion of Class W continua in 1972, several people have tried to determine which continua are contained in Class W and have looked for different characterizations of Class W continua. H. Cook [1] proved that all hereditarily indecomposable continua are in Class W. D. R. Read [10] showed that each chainable continuum is in Class W. G. A. Feuerbacher [2] proved that each nonplanar circle-like continuum is in Class W. B. Hughes [3] proved that Class W contains all continua which have the covering property. J. Grispolakis and E. D. Tymchatyn proved that Class W contains atriodic tree-like continua [6], compactifications of the half line $[0, \infty)$ with remainder a continuum in Class W [3], and irreducible continua of type λ that have each tranche as a tranche of cohesion and each nondegenerate tranche in Class W [3]. They [5] have also proven that continua in Class W are precisely those continua which are absolutely C^*-smooth or, equivalently, precisely those continua which have the covering property. This paper gives another characterization of Class W continua by characterizing absolutely C^*-smooth continua.

2. Definitions. All continua are taken to be compact, connected, metric spaces. A mapping (continuous function) f from a topological space X onto a topological space Y is weakly confluent if and only if each subcontinuum K of Y is the image of some component of $f^{-1}(K)$. A continuum M is in Class W if and only if all mappings from continua onto M are weakly confluent. A continuum X is absolutely C^*-smooth if and only if each continuum Y in which X is embedded and for each sequence $\{X_i\}_{i=1}^{\infty}$ of subcontinua of Y converging to X it is true that $C(X) = \lim_{i \to \infty} C(X_i)$. If Y is a compactification of a topological space X, then $Y - X$ is said to be the remainder.

3. A characterization of absolutely C^*-smooth. In [3] Grispolakis and Tymchatyn made good use of compactifications of the half line $[0, \infty)$ in obtaining continua in Class W. It is only natural to wonder whether it is possible to characterize Class W (or, equivalently, absolutely C^*-smooth) continua in terms of remainders of the compactifications of the half line $[0, \infty)$.

Received by the editors October 17, 1983.
1980 Mathematics Subject Classification. Primary 54B20, 54C25; Secondary 54F15, 54F20.

1Research supported by a Stephen F. Austin State University Faculty Research Grant.

©1984 American Mathematical Society
0002-9939/84 $1.00 + \$0.25 per page

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
THEOREM. A continuum X is absolutely C^*-smooth if and only if each compactification Y of the half line $[0, \infty)$ with remainder X has the property that $C(Y)$ is a compactification of $C([0, \infty))$.

PROOF. Suppose X is a continuum which is absolutely C^*-smooth. Using that which is contained in a proof by Grispolakis and Tymchatyn [3, Theorem 3.5], there is a compactification Y of $[0, \infty)$ which has X as the remainder. For each natural number n, let G_n be a finite open cover of X with mesh less than $1/n$. For each natural number n, there is a natural number m_n such that $[n, m_n]$ intersects each element in the cover G_n since $[n, \infty) \cup X$ is a compactification of $[n, \infty)$. Now since X is absolutely C^*-smooth and $X = \lim_{n \to \infty} [n, m_n]$, it must follow that $C(X) = \lim_{n \to \infty} C([n, m_n])$. This shows that $C(X)$ is a subset of the compactification of $C([0, \infty))$. Suppose K is a subcontinuum of Y which is not a subcontinuum of X. Notice that K must contain at least one point of $[0, \infty)$. If K contains no point of X, then K is a subcontinuum of $[0, \infty)$ which places K in $C([0, \infty))$. If K contains a point of X, then K must be $X \cup [p, \infty)$ for some point p of $[0, \infty)$, which implies that $K = \lim_{n \to \infty} [p, n]$, and thus K must be in the compactification of $C([0, \infty))$. This proves that $C(Y)$ is a subset of the compactification of $C([0, \infty))$. Since $C([0, \infty))$ is a subset of the compact set $C(Y)$, it is obvious that the compactification of $C([0, \infty))$ is a subset of $C(Y)$, which then establishes that $C(Y)$ is a compactification of $C([0, \infty))$.

Now suppose X is a continuum such that each compactification Y of $[0, \infty)$ which has X as the remainder also has the property that $C(Y)$ is a compactification of $C([0, \infty))$. Further assume there is an embedding of X in a continuum Z such that there is a sequence $\{X_i\}_{i=1}^{\infty}$ of subcontinua of Z and a subcontinuum K of X such that $X = \lim_{i \to \infty} X_i$ and K is not in $\lim_{i \to \infty} C(X_i)$. It may be assumed at this point without any loss of generality that Z is embedded in the Hilbert cube such that the first coordinate of each point in Z is zero. There are finite open covers G and H of K such that each element of $G \cup H$ contains a point of K, the closures of the elements of H are subsets of elements of G, and there is a natural number N having the property that X_i does not have a subcontinuum of G^* (the union of the elements of G) intersecting the closure of each element of H for each $i > N$. Let D denote an open subset of the Hilbert cube such that $\overline{H^*} \subset D$ and $\overline{D} \subseteq G^*$. Choose some element of H and denote its closure by A_1. There is a maximum natural number m such that infinitely many of the continua $\{X_i\}_{i>N}$ have subcontinua of \overline{D} intersecting A_1 and the closures of $m-1$ other sets in H. Of all the subcollections of H containing m sets, with one of its sets having closure equal to A_1, one of these subcollections has infinitely many of the continua $\{X_i\}_{i>N}$ possessing subcontinua of \overline{D} intersecting the closures of the sets within this subcollection. The closures of the sets in this subcollection will be denoted by $\{A_i\}_{i=1}^{m}$. It may be assumed without loss of generality that each of the continua $\{X_i\}_{i>N}$ has at least one subcontinuum which is contained in \overline{D} and intersects each of the sets $\{A_i\}_{i=1}^{m}$. Let $\{C_i\}_{i>0}$ denote subcontinua of $\{X_i\}_{i>N}$, respectively, such that each of $\{C_i\}_{i>0}$ is a subset of \overline{D} and intersects each of $\{A_i\}_{i=1}^{m}$. It can be assumed that $\{C_i\}_{i>0}$ converges to a subcontinuum of X. Notice that no subcontinuum of the continua $\{X_i\}_{i>N}$ can intersect each of the sets $\{A_i\}_{i=1}^{m}$ and the closure of another different subset in H. This implies that there must be a positive number ϵ_i for each $i > 0$ such that no continuum within
ε_i of X_{N+i} has a subcontinuum in \overline{D} with points within ε_i of each of $\{A_i\}_{i=1}^m$ and which intersects the closure of a set in H different from each set in $\{A_i\}_{i=1}^m$. In order to see that this is correct, assume it is not true, in which case there exists a natural number I such that for each natural number n there is a continuum E_n within $1/n$ of X_{N+i} which has a subcontinuum F_n in \overline{D} with points within $1/n$ of the closed sets $\{A_i\}_{i=1}^m$ and which intersects the closure of a set in H that is different from each of the sets $\{A_i\}_{i=1}^m$. Since H is a finite set, one of the sets in H has its closure B intersected by infinitely many of the continua $\{F_i\}_{i=0}^\infty$; thus, the continuas $\{E_i\}_{i>0}$ converge to X_{N+i} with $\{F_i\}_{i>0}$ converging to a subcontinuum of both X_{N+i} and \overline{D} which intersects each of $\{A_i\}_{i=1}^m$ together with intersecting B, which is a contradiction of the agreement that no subcontinuum of both X_{N+i} and \overline{D} can intersect the closure of $m+1$ sets in H. This proves that positive numbers $\{\varepsilon_i\}_{i=0}^\infty$ as described above do indeed exist. Now a point x_0 is selected from X which belongs to the subcontinuum of X to which $\{C_i\}_{i>0}$ converges. Open balls $\{R_i\}_{i=1}^\infty$ of the Hilbert cube are selected such that each has x_0 as its center, and such that R_n has radius less than $1/n$. Again without loss of generality it may be assumed that R_i contains a point p_i of C_i; otherwise, a subsequence of $\{C_i\}_{i=0}^\infty$ is selected and relabeled so that this is correct and the corresponding subsequence of $\{X_i\}_{i>N}$ which contains $\{C_i\}_{i>0}$ as subcontinua, respectively, is also selected and labeled as $\{X_i\}_{i>N}$. For each natural number i, let S_i be a minimal finite collection of open balls covering X_{N+i} with mesh less than the minimum of ε_i, $1/i$, and the distance from C_i to the boundary of D. Let S'_i denote the minimal subcollection of S_i covering C_i. Define q_i to be a point with first coordinate different from zero so that q_i is a point of R_i and of some open set in S'_i that contains p_i. There is a piecewise-linear arc α_i which is a subset of $(S'_i)^*$ such that α_i has as endpoints q_i and some other point r_i, no point of α_i has its first coordinate equal to zero, and α_i passes through each open ball in S'_i. From any point of C_1 to any other point of C_1 there is a chain of open balls in S'_i. In particular, there is a point z_1 of C_1 in an open set V in S'_i that contains both p_1 and q_1. There is a chain of open balls in S'_i from z_1 to some other point of C_1. This chain must contain V as the first link; thus, a piecewise-linear arc can be constructed that begins at q_1 and runs to the last link of the chain. Another chain can now be considered whose first link is the same as the last link of the first chain, and the last link of the second is different from each link of the first chain. The arc α_1 can continue to be constructed by passing it through this second chain. This process can be continued until α_1 passes through each element of S'_i in such a way that it has the above-mentioned properties. There is another piecewise-linear arc β_1 which is a subset of S'_i passing through each open ball in S_1 such that β_1 has r_1 and another point s_1 as endpoints, the point r_1 is the only point that α_1 and β_1 have in common, and all points of β_1 have their first coordinates different from zero. Another piecewise-linear arc γ_1 runs from s_1 back through each open ball in S_1 in the reverse manner in which β_1 passed through the open balls in S_1 such that γ_1 is a subset of S'_i, γ_1 has as endpoints s_1 and some other point t_1 which, together with r_1, belongs to a common element of S_1, the only point γ_1 has in common with $\alpha_1 \cup \beta_1$ is s_1, and all first coordinates of the points of γ_1 are different from zero. Now a piecewise-linear arc δ_1 is selected within $(S'_i)^*$ that runs from t_1 to another point u_1 which belongs to an open set in S'_i that also contains q_1 such that δ_1 passes through all the open balls in S'_i in the reverse
manner in which \(\alpha \) passed through the elements \(S'_1, \delta_1 \) only has \(t \) in common with \(\alpha \cup \beta_1 \cup \gamma_1 \), and all points in \(\delta \) have their first coordinates different from zero. An arc \(\sigma_1 \) within \(R_1 \) is run from \(U_1 \) to a point \(q_2 \) of \(R_2 - (\alpha \cup \beta_1 \cup \gamma_1 \cup \delta_1) \) such that \(q_2 \) is a point of some open set in \(S'_2 \) that contains \(p_2 \) and \(U_1 \) is the only point \(\sigma_1 \) has in common with \(\alpha \cup \beta_1 \cup \gamma_1 \cup \delta_1 \). In general for \(i > 1 \), piecewise-linear arcs \(\alpha_i, \beta_i, \gamma_i, \delta_i, \sigma_i \) and points \(r_i, s_i, t_i, u_i, q_i+1 \) are defined with respect to \(S'_i, S_i, R_i+1 \), and \(p_i+1 \) in a way similar to the way \(r_1, s_1, t_1, u_1, q_2 \) were defined with respect to \(S'_1, S_1, R_2 \), and \(p_2 \) above with the additional requirement that \(q_i \) is the only point that \(\alpha_i \cup \beta_i \cup \gamma_i \cup \delta_i \cup \sigma_i \) has in common with \(\bigcup_{i=1}^{i-1} (\alpha_j \cup \beta_j \cup \gamma_j \cup \delta_j \cup \sigma_j) \). Notice that \(\bigcup_{i=1}^{\infty} (\alpha_i \cup \beta_i \cup \gamma_i \cup \delta_i \cup \sigma_i) \) is a ray which has a compactification \(Y \) with \(X \) as the remainder. Since \(C(Y) \) is a compactification of \(C\left(\bigcup_{i=1}^{\infty} (\alpha_i \cup \beta_i \cup \gamma_i \cup \delta_i \cup \sigma_i) \right) \), there is a sequence of intervals \(\{I_i\}_{i=1}^{\infty} \) of the ray converging to \(K \). For some natural number \(n' \), \(I_{n'} \) must be a subset of \(D \) that intersects the closure of each element of \(H \). For each \(j \), there are points \(l_j \) and \(l'_j \) which have the property that \(l_j \) is the last point on the arc \(\alpha_j \cup \beta_j \) in the order \(q_j \) to \(s_j \) such that the interval in \(\alpha_j \cup \beta_j \) from \(q_j \) to \(l_j \) is a subset of \(\overline{D} \), and similarly, \(l'_j \) is the last point on the arc \(\gamma_j \cup \delta_j \) in the order from \(u_j \) to \(z_j \) such that the interval in \(\gamma_j \cup \delta_j \) from \(u_j \) to \(l'_j \) is a subset of \(\overline{D} \). Notice that the interval from \(l'_j \) to \(l_{j+1} \) in the arc \(\gamma_j \cup \delta_j \cup \sigma_j \cup \alpha_{j+1} \cup \beta_{j+1} \) cannot have \(I_i \) as a subset since the interval from \(l'_j \) to \(l_{j+1} \) intersects only \(\{A_i\}_{i=1}^{m} \) of the closures of the sets in \(H \). There must then exist a natural number \(J \) such that \(I_{n'} \) is a subset of \(\beta_j \cup \gamma_j \) which now says that \(\beta_j \cup \gamma_j \) is a continuum within \(\epsilon_j \) of \(X_{N+j} \) with subcontinuum \(I_{n'} \) in \(\overline{D} \) with points within \(\epsilon_j \) of \(\{A_i\}_{i=1}^{m} \) and intersecting the closure of another set (actually all of the other sets) in \(H \) different from \(\{A_i\}_{i=1}^{m} \). This contradiction proves that \(X \) is absolutely \(C^* \)-smooth.

REFERENCES

6. ———, *Continua which are images of weakly confluent mappings only. II*, Houston J. Math. 6 (1980), 375–387.