Compact Lie group action and equivariant bordism
HTML articles powered by AMS MathViewer
- by Shabd Sharan Khare
- Proc. Amer. Math. Soc. 92 (1984), 297-300
- DOI: https://doi.org/10.1090/S0002-9939-1984-0754725-X
- PDF | Request permission
Abstract:
Let $G$ be a compact Lie group and $H$ a compact Lie subgroup of $G$ contained in the center of $G$ with ${H^m}$ the maximal subgroup in the center, $H$ being $H$-boundary. Let $pr:{H^m} \to H$ be the projection onto the $r$th factor and ${H_r}$ be the $r$th factor of ${H^m}$. Let $\{ {L_r}\}$ be a family of subgroups of $G$ such that ${L_r} \cap {H_r}$ is nontrivial. Consider a $G$-manifold ${M^n}$ with $pr({G_x} \cap {H^m})$ trivial or containing ${L_r}$, for every $x$ in ${M^n}$. The main result of the paper is that if $\forall x \in {M^n}$, ${p_r}({G_x} \cap {H^m})$ is trivial at least for one $r$, then ${M^n}$ is a $G$-boundary.References
- P. E. Conner and E. E. Floyd, Differentiable periodic maps, Ergebnisse der Mathematik und ihrer Grenzgebiete, (N.F.), Band 33, Academic Press, Inc., Publishers, New York; Springer-Verlag, Berlin-Göttingen-Heidelberg, 1964. MR 0176478
- Gary C. Hamrick and David C. Royster, Flat Riemannian manifolds are boundaries, Invent. Math. 66 (1982), no. 3, 405–413. MR 662600, DOI 10.1007/BF01389221 S. S. Khare, $(\mathcal {F},\mathcal {F}’)$-free bordism and stationary points set, Internat. J. Math. Math. Sci. (to appear).
- S. S. Khare, Stationary points set and $G$-bordism, Indian J. Pure Appl. Math. 14 (1983), no. 1, 1–4. MR 696828
- S. S. Khare, Finite group action and equivariant bordism, Pacific J. Math. 116 (1985), no. 1, 39–44. MR 769821
- Czes Kosniowski, Some equivariant bordism theories vanish, Math. Ann. 242 (1979), no. 1, 59–68. MR 537326, DOI 10.1007/BF01420482
- R. E. Stong, Equivariant bordism and $(Z_{2})^{k}$ actions, Duke Math. J. 37 (1970), 779–785. MR 271966
Bibliographic Information
- © Copyright 1984 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 92 (1984), 297-300
- MSC: Primary 57S15; Secondary 57R85
- DOI: https://doi.org/10.1090/S0002-9939-1984-0754725-X
- MathSciNet review: 754725