Excess linear series on an algebraic curve
HTML articles powered by AMS MathViewer
- by William Fulton, Joe Harris and Robert Lazarsfeld
- Proc. Amer. Math. Soc. 92 (1984), 320-322
- DOI: https://doi.org/10.1090/S0002-9939-1984-0759642-7
- PDF | Request permission
Abstract:
We prove that the dimensions of the varieties $W_d^r$ of complete linear series of degree $d$ and dimension at least $r$ on a curve satisfy the inequalities $\dim W_{d - 1}^r \geqslant \dim W_d^r - (r - 1)$. In particular, a curve with ${\infty ^2}g_d^1$’s must have a $g_{d - 1}^1$.References
- E. Arbarello, M. Cornalba, P. Griffiths and J. Harris, Geometry of algebraic curves, Springer-Verlag, 1984.
- Spencer Bloch and David Gieseker, The positivity of the Chern classes of an ample vector bundle, Invent. Math. 12 (1971), 112–117. MR 297773, DOI 10.1007/BF01404655
- William Fulton, Intersection theory, 2nd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 2, Springer-Verlag, Berlin, 1998. MR 1644323, DOI 10.1007/978-1-4612-1700-8
- W. Fulton and R. Lazarsfeld, On the connectedness of degeneracy loci and special divisors, Acta Math. 146 (1981), no. 3-4, 271–283. MR 611386, DOI 10.1007/BF02392466
Bibliographic Information
- © Copyright 1984 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 92 (1984), 320-322
- MSC: Primary 14H40; Secondary 14C20
- DOI: https://doi.org/10.1090/S0002-9939-1984-0759642-7
- MathSciNet review: 759642