Differential basis and $p$-basis of a regular local ring
HTML articles powered by AMS MathViewer
- by Tetsuzo Kimura and Hiroshi Niitsuma
- Proc. Amer. Math. Soc. 92 (1984), 335-338
- DOI: https://doi.org/10.1090/S0002-9939-1984-0759648-8
- PDF | Request permission
Abstract:
We prove that any differential basis of a regular local ring $R$ of characteristic $p > 0$ over ${R^p}$ is a $p$-basis of $R$ over ${R^p}$. This result gives a characterization of a regular local ring $R$ which has a $p$-basis over ${R^p}$.References
- Robert Berger and Ernst Kunz, Über die Strucktur der Differentialmoduln von diskreten Bewertungsringen, Math. Z. 77 (1961), 314–338 (German). MR 130891, DOI 10.1007/BF01180183 A. Grothendieck and J. Dieudonné, Eléments de géométrie algébrique, Ch. IV, Première Partie, Publ. Inst. Hautes Études, No. 20, 1964.
- Ernst Kunz, Differentialformen inseparabler algebraischer Funktionenkörper, Math. Z. 76 (1961), 56–74 (German). MR 136604, DOI 10.1007/BF01210961
- Tetsuzo Kimura and Hiroshi Niitsuma, A note on the Noetherian integral domain with a $p$-basis, TRU Math. 15 (1979), no. 2, 1–4. MR 564362
- Tetsuzo Kimura and Hiroshi Niitsuma, Regular local ring of characteristic $p$ and $p$-basis, J. Math. Soc. Japan 32 (1980), no. 2, 363–371. MR 567425, DOI 10.2969/jmsj/03220363
- Hideyuki Matsumura, Commutative algebra, 2nd ed., Mathematics Lecture Note Series, vol. 56, Benjamin/Cummings Publishing Co., Inc., Reading, Mass., 1980. MR 575344
Bibliographic Information
- © Copyright 1984 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 92 (1984), 335-338
- MSC: Primary 13H05; Secondary 13B10
- DOI: https://doi.org/10.1090/S0002-9939-1984-0759648-8
- MathSciNet review: 759648