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PROPERTIES OF THE FOURIER ALGEBRA
THAT ARE EQUIVALENT TO AMENABILITY

VIKTOR LOSERT

ABSTRACT. It is shown that a locally compact group G is amenable iff each

multiplier on the Fourier algebra A(G) is given by a function from the Fourier-

Stieltjes algebra B(G). Another condition is that the norm of A(G) is equiv-

alent to that induced by the regular representation of A(G).

Several properties of A(G) have been shown to be equivalent to the amenability

of G: (1) A(G) has a bounded approximate identity [Lep 2; H 1, Theorem 6,

p. 120]. (2) A(G) factorizes weakly, i.e. A(G) is the linear span of A(G) ■ A(G)

[Lo 1, Proposition 2, p. 138]. (3) M(A(G),A(G)) = B(G) (G discrete), where

M(-) denotes the space of multipliers (see below). This was shown by Nebbia

[N, Theorem 2, p. 553]. In the case of groups having nonabelian free subgroups,

the existence of multipliers on A(G) not belonging to B(G) was shown by Figà-

Talamanca and Picardello [FP]. Some results on the case of Lie groups can be

found in [DH], In this paper we extend (3) to nondiscrete groups.

THEOREM l. The following statements are equivalent for any locally compact

group G:

(a) G is amenable.

(b)M(A(G),A(G)) = B(G).
(c) The norm of A(G) is equivalent to that induced by the regular representation

of A(G) (by multiplication on itself).

Condition (c) means there exists c > 0 such that, for each u G A(G),

supfllHU: v G A(G),  \\v\\A < 1} > c||ii|U,

or, equivalently (by the open mapping theorem), A(G) is closed in M(A(G), A(G)).

In the case of amenable groups, (c) (and the factorization property of A(G)) are

consequences of the existence of a bounded approximate identity (and one even gets

an isometry, i.e. c = 1 in (c) and ordinary factorization). But for general Banach

algebras, the reverse conclusion is not possible, as was shown by an example of

Leinert [Lei].

Notations, e denotes the unit of G, A a fixed Haar measure on G. In integrals,

dx, dy, etc. refer to A. For /: G —* C, x € G, we define left translation by Lxf(y) =

f(x~1y). Similarly, for g G LX(G), f G LP(G), we use convolution to define

Lgf = g * f. For x G G, 6X denotes the Dirac measure concentrated at x. K(G)

denotes the space of continuous (complex-valued) functions f on G with compact

support supp/. Giu(G) denotes the space of left-uniformly continuous functions; it
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consists of those bounded functions /: G —> C for which x —> Lx/ is continuous

with respect to || ||oo. For the definition and simple properties of means on L°°(G)

and Giu(G), we refer to [Gr]. G is called amenable if there exists a left-invariant

mean on L°°(G).

For the definition and properties of the Fourier algebra (A(G), || ||a) and the

Fourier-Stieltjes algebra B(G), we refer to [E]. Fi(G) denotes the set of continuous

positive-definite functions u: G —> C such that u(e) = 1. By [E, p. 218], any

u G A(G) can be written as u(x) = (Lxh, k), where h,k G L2(G) and ( , ) denotes

the inner product of L2(G). If, in addition, u G Pi(G), one can assume that h = k

and \\h\\2 = 1 [E, p. 188]. VN(G) denotes the von Neumann algebra on L2(G)

generated by the operators Lx (x G G), C\\(G) denotes the C*-algebra generated

by all Lf (f G LX(G)), i.e. the norm closure in the space of operators. By [E, p.

210], VN(G) can be identified with the dual of A(G), for T G VN(G), u G A(G) as
above, the duality is given by (T,u) = (Th,k).

A linear operator T: A(G) —> A(G) is called an (A(G)-)multiplier if T(uv) =

uT(v) for all u, v G A(G) (similarly for arbitrary A(G)-modules). The space of

multipliers is denoted by M(A(G), A(G)). It follows easily from [E, (3.34), p. 222]

and the closed graph theorem that any T G M(A(G),A(G)) is norm bounded and

given by a multiplication operator T(u) = gu, where g: G —> C is bounded and

continuous. Conversely, any g G B(G) defines a multiplier [E, (3.4), p. 208], i.e.

B(G)CM(A(G),A(G)).

LEMMA 1. //Te C*L(G) and K is a compact subset of G, then T \ L2(K) is

compact. (In particular, C*L(G) has a unit iff G is discrete.)

PROOF. T | L2(K) denotes the restriction of T considered as a mapping from

L2(K) (subspace of L2(G)) to L2(G). We may assume T = Lf, with / e K(G),

and A(F) > 0. If g G L2(K) with ||9||2 < X(K)-1/2, tnen \\g\\x < 1; hence

Lf(g) = f * g = JKg(x)f * 6xdx belongs to the closed, absolutely convex hull

of {/ * 6X: x G F}. (If Lf is invertible, this is possible only if L2(K) is finite

dimensional.)

REMARK. Even if G is not discrete, it may happen that the spectrum of C£(G)

(or C*(G)) is compact (see [B, p. 144]).

In Lemma 2 and Proposition 1, / denotes a continuous function on R such that

0 < / < 1, f(t) = 0 for í < 1/4 and f(t) = 1 for t > 1/2.

LEMMA 2. (a) IJRG VN(G), F < 1, u G A(G)nP1(G), xgG, (R,u) > 1-

S2/2, (Lx-iRLx,u)>l-62/2, R! = f(R), S = R'LXR', then (S,Lxu) > 1 -26.
(b) If R,u are as in (a), R¿ G VN(G) commute pairwise, 0 < F¿ < 1 (i =

1, •'•.•,«), (Er=iFf>M><(¿2/4n)2, and F" = FELií* ~ &)R Ut A1 ~ K), then
(R",u) >l-62.

PROOF, (a) We have u(x) = (Lxh, h) for some h G L2(G) with ||h||2 = 1. Since

(1 - F')2 < 2(1 - F), we get

\\h - R'h\\22 < 2((1 - R)h,h) = 2(1 - (R,u)) < 62

and, similarly, \\Lxh - R'Lxh\\2 < S2. Now

(S, Lxu) = (Sh, Lxh) = (LxR'h, R'Lxh) > (Lxh, Lxh) -26 = 1-26.
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(b) Keeping the notation of (a), we have ||F¿/i||2 < 62/4n. Since

t-i

i^H(l-Ri) = ̂ RiYl(l-Rj),
¿=1        ]=1i=l

we get || niUU - Ri)h - hh < ¿2/4 and the result follows.
In the case of a nondiscrete abelian group G, multiplication by characters defines

an isometry on A(G) and, given ui,u2 G A(G), one can find X11X2 G Gesuch that

(wiXi)~and («2X2)~have "almost" disjoint supports. The following proposition

shows that similar things can be done for general G, at least for translates of

positive-definite functions.

PROPOSITION 1. Assume that G is not discrete, Ui G A(G)(~]Pi(G), xlGG (i =

l,...,n), e > 0. Then there exist Wi G Pi(G), St G C*L(G) satisfying: \\Sl\\ < 1,

the images of Si (resp. S*) are pairwise orthogonal, (Sí,LXí(uíWí)) > 1 — e for all

i.

In particular,

n n

^2ßiLXi(ulwi)      >(l-e)^|p¿|    for all ^ G C.

i=l a ¿=1

PROOF. We use induction on n. Observe that C*L(G) is w*-dense in VN(G) [Di

1, 1.3.4, Corollary 1, p. 45] and that the same is true for the hermitian parts of the

unit balls [Di 1, 1.3.5, Theorem 3, p. 47]. For n = 1 take F G C*L(G) such that

F< 1, (R,ui) > l-e2/8and (L^-iFF^,^) > 1 - £2/8. Put Fi = f(R), R~i =

/(2F), Si = RiLXlRi. Then by Lemma 2(a) (Si,LXlui) > 1 - e. Put wi = 1.

Now assume we have constructed Si and wx (i = 1,... ,n) as needed, so that

St = RiLXtRt, Ri,Rt G Cl(G), 0 < F,,F, < 1, RÏÏÏj = 0 for i ¿ j and FÄ = Ft.

Put Ti = Er=i^2>  T2 = Lx-i TiLXn+1.   Then un+iTk G C*L(G) [E, p. 224].

By Lemma 1 there exists h G L2(G) such that \\h\\2 = 1 and ((un+iTk)h,h) <

(£2/64n)2 for k = 1,2. Putwn+i(z) = (Lxh,h). Then (Tfc,un+1wn+i) < (£2/64n)2.

Now, as above, choose F e C*L(G) such that F < 1,   (F,un+iwn+i) > 1 —

£2/16, (Lx-i RLXri+i,un+iwn+i) > l-£2/16. Put

R' = f[(l-Rl)Rl[(l-Rl),    Rn+i = f(R'), Rn-rl f(2R').
i=i

Then R'R¿ = 0 for i == 1,5..,«. Using Lemma 2(b) and 2(a) and replacing F¿ by

(1 — f(4R'))Ri(l — f(4R')) for i = 1,... ,n, we get all properties needed for the

induction step.

LEMMA 3. Assume that G is not discrete and s\ip{\\uv\\a: \\v\\a < 1} > c||u||.4

for all u G A(G). Then, given u G A(G) n Pi(G), xx,...,xn G G, there exists

v G A(G) n Fi(G) such that ¿?=1 ||u • LXiu||^ > cn/4.

PROOF. By Proposition 1 there exists wt G Pi(G) such that || J27=i LXí(uwí)\\a

> n/2. By assumption there exists v G A(G) with \\v\\a < 1 such that

\v- ^LXi(uWj) >
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Replacing cn/2 by cn/4, we may assume that v is hermitian. Then by [E, (3.15),

p. 212 and (2.7), p. 193] we get v positive-definite. Now the result follows.

The next step uses a device due to H. Rindler (see [Lo 1, Lemma 4, p. 136]).

LEMMA 4.   For a, b G L2(G) with a, b > 0, we have

Í \a2-b2\dX<l( í a2 + b2dx\   -íííabdx)    J       .

LEMMA   5.   Let 0 < £ <  1,   U, V, W be e-neighbourhoods such that UW Ç
V,  X(V) < (1 + s)X(W).   Let h,k G L2(G),  T G VN(G) be such that \\h\\2 <

1,   \\k\\2 < 1,   ||T|| < l,suppT Ç U.   Define a mean M on Giu(G) by M(f) =

fG f ■ \h\2 dX.  Then forxGG, f G Giu(G),

\M(Lxf - f)\ <2sup{||Fy/ - /Hoc : y G V)

+ 11/1100(2 + 3£ - \(T(h ® k), Lx-,h® k)\2).

(See [E, 4.5, p. 226] for the definition of suppT; the representation x —> LX®LX

is quasi-equivalent to L [D 2, Example 13.11.3, p. 306], hence T is also defined on

L2(G) ® L2(G) [D 2, 5.3.1, p. 118].)

PROOF. Put 6 = sup{\\Lyf - ff^y G V}. Since ||fc||2 = 1, we have

r

¥(/)=/       f(y)\h(y)k(z)\2d(y,z).
JGxG

f      f(y)\h®k\2(y,z)d(y,z)
JGxG

<6- X(Vr' í   i       f(r1y)\h®k\2(y,z)d(y,z)dt
JVJGxG

and the second integral equals

W-1 / f(y) I      \h® k\2(ty, z) d(t, z) dy.
JG JVxG

Similarly,

\M(Lxf)-X(W)~1 f f(y) [       \Lx-ih®k\2(ty,z)d(t,z)dy\<8.
JG JWxG

Since \X(V)-X - X(W)~l\ < eX(V)-\ we get (putting

a(y)2 = \Lx-1h®k\2(ty,z)d(t,z)
JWxG

and

b(yf= [       \h®k\2(ty,z)d(t,z))
JVxG

\M(Lxf -f)\<28 + U/lUe + X(W)-1) f \a(y)2 - b(y)2\dy.
JG

Now we apply Lemma 4. We have JGa(y)2dy = X(W), JGb(y)2dy = X(V). Fur-

thermore,

a(y) = A(y)-1/2\\Lx-lh®k\WyxG\\2    and    b(y) = A(y)~1/2\\h® k\Vy x G||2.

(A denotes the Haar modulus of G.)
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By our assumptions on T, we have

\\h ® k\Vy x G||2 > \\T(h g k)\Vy x G||2 > \\T(h ® k)\Wy x G\\2.

(It follows easily from [E, 4.8, p. 226] that supp(T(/i <g> k)) Ç suppT ■ supp(/i ® k),

where • refers to the diagonal action of G on G x G.) This gives

[ a(y)b(y)dy> [ \\Lx-ih® k\Wy x G\\2\\T(h® k)\Wy x G^Afo"1)^
JG JG

> \(Lx-ih®k)-T(h®k)\(t,z)d(t,z)A(y~1)dy
Jg JwyxG

\(Lx-ih® k) ■ T(h ® k)\(ty, z) d(t, z) dyISJG JWIG JWxG

>X(W)\(T(h®k),Lx-ih®k)\.

Hence, by Lemma 4,

[ \a(y)2 - b(y)2\dy < ((X(W) + X(V))2 - 4X(W)2\(T(h ® k),Lx-ih® k)\2)^2
JG

< 2X(W)(1 + 2e- \(T(h ® k),Lx-i(h® k)\2)1/2

< X(W)(2 + 2e- \(T(h ® k),Lx-,h® k)\2)

and the result follows.

If M is a mean on L°°(G) or Giu(G), x G G, we write

d(M,x)=sup{\M(Lxf-f)\:\\f\\00<l}.

PROPOSITION 2. Assume there exists c < 2 such that for each xx,...,xn G G

(not necessarily distinct points) there exists a mean M on Giu(G) with 2~^i=l d(M, x¿)

< en.  Then G is amenable.

PROOF. This will be done in two steps. Let At be the set of means on Giu(G).

First we show that, given xi,... ,xn G G, there exists M G M such that d(M, xt) < c

for i = 1,... ,n.

To each M G M we associate the n-tuple (d(M, x¿))™=1 G R". Let G be the

convex hull of these elements, take £ > 0 and assume that C contains no vector

(ti) with ||(í¿)||oo < c + £. Then we apply the separation theorem for convex sets.

There exists (u¿) G Rn such that ||(w¿)||i = 1 and Y^=i t%ui > c + £ f°r all (ti) G G.

We may assume that ut > 0 and Ui = pi/q G Q for i = 1,..., n (replacing e by

£/2). Then V^Pl = q. Put t/i = • ■ • = yPl = xx, yPl + i = • • • = yPl+P2 = x2, etc.

Then, by assumption, there exists M G M such that £7 = 1 d(M,yj) < cq. But

q n n

q-1Y^d(M,yj) = q-1J2Pid(M,xl) = ^u¿d(AÍ,x¿) > c + -
j = l i = l i=l

by definition of (u¿), and we arrive at a contradiction. Thus, there exists (ti) G C

with ||(ii)||00 < c + £. Then t¿ = ]T Xkd(Mk,Xi) for some Mk G M, Afc > 0 with

¿Z Afe = 1. Put M = £ AfcMfc. Then M e M and d(M, x¿) < ít < c + £ for all i.
Since £ > 0 was arbitrary, the first step follows from the compactness of M.
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The second step is now to show that, given xx,..., xn G G, there exists a mean M

on L°°(G) such that d(M, x¿) < c for i = 1,..., n. Then the result will follow from

[Loi, Lemma 3 and Theorem 1 (see also [Gi, Lep 1]). The extension from C\U(G)

to L°°(G) is done essentially as in [Gr, p. 28]. Fix u G LX(G) with u > 0, ||u||i = 1.

For M G M, f G L°°(G), put M, (/) = M(u * f). Then Mi is a mean on L°°(G).

Given xi,... ,xn G G, we have MX(LXJ - f) = M((u * 6Xi - u) * f). For e > 0

there exists v G LX(G) with v > 0, ||t;||i = 1, such that ||(u*<5Xi —u)*(v — 6e)\\x < e

for i = 1,...,«. Then we can find yj G G, Xj > 0 with J2^j = 1 sucn that

||(w — J2 ^jàyj) * {&Xi * v ~ v)\\i < £- This gives combined (assuming ||/||oo < 1) :

|M!(LX,/ - /)| < 2£ + J2^■\M(6Vi * (6Xt *v-v)*f)\

= 2e + YJHM((6V]X%y-l-6e)*6y]*v*f)\

<2e + Y^^jd(M,yJxlyj1).

Choosing M G M so that d(M,yjXiy~1) < c for all i,j, we get d(Mi,xî) < c + 2e

for all i.

PROOF OF THEOREM 1. If G is amenable, then (a)=»(b) by [De, Theorem

9; H 2, Theorem 1; or R, Theorem 1], (b)=i>(c) is trivial. Now assume that

sup{||urj||^: \\v\\a < 1} > c||u||^ for each u G A(G) (where c > 0). The discrete case

can be settled as in [N|: Take h G l2(G). By Lemma 2 of [N] there is $ G l°°(G) such

that ||$||oo = 1 and ||/i$||,4 > Ci||/i||2- By assumption there is u G A(G) such that

||u||a = 1 and ||w/i$|U > c||/i$||a > cci||/i||2.  But ||u/h.#m < ||u/i$||2 < \\uh\\2.
c, c2 are independent of u, i> and therefore l2(G) is closed in M(A(G), l2(G)). Now

the same proof as for Theorem 1 of [N] shows that G is amenable.

Now assume G is nondiscrete. Take xx,...,xn G G and put £ = c2/200. If V is a

neighbourhood of e, choose neighbourhoods U, W such that X(W) > (1 + e)~1X(V)

and UW Ç V. Take u G A(G) n Pi(G) with suppw G U. By Lemma 3 there exists

v G A(G) n Fj(G) such that

n

J2\\v-LXtu\\A> ~-
i=l

Put Ci = \\v ■ LXiu\\A, v(x) = (Lxh, h), u(x) = (Lxk, k), where h, k G L2(G), \\h\\2

= \\k\\2 = 1. Then there exists T[ G VN(G) such that ||T/|| < 1 and (Tj,v- LXiu) =

d. Wehme{L^xT¡,Lp-iV-u) = (T¡,v-LXiu). Put w(x) = X(wy1X(xW nV).

Then w = 1 on U and ||io||A < (X(V)IX(W))1/2 < 1 + e. Put Tx = w ■ (Lx7iT¡) ■

(1 + e)'1. Then ||F|| < 1,

(Tz(h®k), Lx-ih®k) = (Ti,i,±7iv>u) = cl(l + e)~1 >ct/2
i i

(since suppu Ç U). We define a mean M on Ciu(G) by M(f) = JG f(x)\h(x)\2 dx.

By Lemma 5,

\M(LXJ - f)\ < 2sup{||F,/ -f\\:yeV}+ ||/|U2 + 3e - c2/4).

We have J2ci ^ rcc/4, hence ^cf > n(c/4)2. Thus

J2 \M(LXJ - f)\ < 2sup{\\Lyf - /]]: y G V) + n||/|Uc (2 + 3£ - C- ) .
i=i ^ '
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The neighbourhood V was arbitrary. Considering a limit along the neighbourhood

filter, we get a mean M on Giu(G) such that Yn=i d(M,Xi) < n(2 + 3£ - c2/64).

Now Proposition 2 shows that G is amenable.

A related criterion for amenability can be obtained using the space Sq(G) (see

[Fe]). It can be defined as follows: Let (ijji) be a bounded uniform partition of

unity in A(G), i.e. all tpi are uniformly bounded in A(G), suppt/>¿ is contained in

a left-translate of a fixed compact subset K and there exists no such that for each

x G G the supports of at most no functions ipi intersect xK (e.g. for G = R one

can take trapezoidal functional of width 2 with integer endpoints; see also [Lo 2,

Proposition 1, p. 131]). Then S0(G) = {u : G -> C : ||u||So = £ \\uipi\\A < oo}.

THEOREM 2.   G is amenable iff M(A(G), S0(G)) = S0(G).

PROOF. Let G be amenable and consider $ G M(A(G), Sq(G)). Given finitely

many t\)x (i G lo), e > 0, there exists u G A(G) such that ||u||a < l + £, u(x) = 1 for

x G supp^i (i G h). Hence u$ G S0(G) and £ie/o II^IU = Eîe/0 II "^ Il a ^
||$||a/(1 + e) (where || ||m denotes the multiplier norm). Hence $ G So (G).

Conversely, assume that sup{||u$||s0: ||u||a < 1} > c||$||s0 for all $ G So (G).

Then we proceed as in Theorem 1. Choose u G A(G) fl Pi (G) and take xx,...,xn G

G. As in Lemma 3, there is v G So(G), suchthat V ■ ||i>-FXj.«||s0 > cn/2, ||w||s0 < 1.

Since So(G) is contained in A(G), we have \\v\\a < cx. For functions whose support

is contained in a translate of a fixed compact set, the A- and So-norms are equivalent

[Fe, p. 275]. Thus we get V^ ||i> ■ LXj.u||yi > cc2n/2. Now continue as in Lemma

3 and Theorem 1. In the discrete case, So(G) = lx(G), hence one can use [N,

Theorem 1].
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