On existence of oscillatory solutions for a second order sublinear differential equation
HTML articles powered by AMS MathViewer
- by James S. W. Wong
- Proc. Amer. Math. Soc. 92 (1984), 367-371
- DOI: https://doi.org/10.1090/S0002-9939-1984-0759654-3
- PDF | Request permission
Abstract:
A result on the existence of oscillatory solutions for the second order sublinear differential equation $y'' + a(t){\left | y \right |^\gamma }\operatorname {sgn} y = 0$, $0 < \gamma < 1$, where $a(t)$ is positive and continuous, is given. This supplements a well-known result of Hinton for the superlinear case, i.e. $\gamma > 1$.References
- S. Belohorec, Oscillatory solutions of certain nonlinear differential equations of second order, Mat. Fyz. Časopis Sloven. Akad. Vied 11 (1961), 250-255.
- Štefan Belohorec, On some properties of the equation $y^{\prime \prime }(x)+f(x)y^{\alpha }(x)=0$, $0<\alpha <1$, Mat. Časopis Sloven. Akad. Vied 17 (1967), 10–19 (English, with Russian summary). MR 214854
- C. V. Coffman and J. S. W. Wong, Oscillation and nonoscillation theorems for second order ordinary differential equations, Funkcial. Ekvac. 15 (1972), 119–130. MR 333337
- C. V. Coffman and J. S. W. Wong, Oscillation and nonoscillation of solutions of generalized Emden-Fowler equations, Trans. Amer. Math. Soc. 167 (1972), 399–434. MR 296413, DOI 10.1090/S0002-9947-1972-0296413-9 L. H. Erbe, Oscillation and nonoscillation properties of second order nonlinear differential equations, Proc. Equadiff. Z2 (Wurzburg) 1983 (to appear).
- Lynn H. Erbe and James S. Muldowney, On the existence of oscillatory solutions to nonlinear differential equations, Ann. Mat. Pura Appl. (4) 109 (1976), 23–38. MR 481254, DOI 10.1007/BF02416952
- Lynn H. Erbe and James S. Muldowney, Nonoscillation results for second order nonlinear differential equations, Rocky Mountain J. Math. 12 (1982), no. 4, 635–642. MR 683858, DOI 10.1216/RMJ-1982-12-4-635
- Don Hinton, An oscillation criterion for solutions of $(ry^{\prime } )^{\prime } +qy^{\gamma }=0$, Michigan Math. J. 16 (1969), 349–352. MR 249728
- Miloš Jasný, On the existence of an oscillating solution of the nonlinear differential equation of the second order $y^{\prime \prime }+f(x)y^{2n-1}=0,$ $f(x)>0$, Časopis Pěst. Mat. 85 (1960), 78–83 (Russian, with Czech and English summaries). MR 0142840
- I. T. Kiguradze, On the oscillatory and monotone solutions of ordinary differential equations, Arch. Math. (Brno) 14 (1978), no. 1, 21–44. MR 512742
- Takeshi Kura, Oscillation theorems for a second order sublinear ordinary differential equation, Proc. Amer. Math. Soc. 84 (1982), no. 4, 535–538. MR 643744, DOI 10.1090/S0002-9939-1982-0643744-8
- Jaroslav Kurzweil, A note on oscillatory solution of equation $y''+f(x)y^{2n-1}=0$, Časopis Pěst. Mat. 85 (1960), 357–358 (Russian, with English and Czech summaries). MR 0126025
- Man Kam Kwong and James S. W. Wong, On the oscillation and nonoscillation of second order sublinear equations, Proc. Amer. Math. Soc. 85 (1982), no. 4, 547–551. MR 660602, DOI 10.1090/S0002-9939-1982-0660602-3
- Man Kam Kwong and J. S. W. Wong, Nonoscillation theorems for a second order sublinear ordinary differential equation, Proc. Amer. Math. Soc. 87 (1983), no. 3, 467–474. MR 684641, DOI 10.1090/S0002-9939-1983-0684641-2
- Man Kam Kwong and James S. W. Wong, On an oscillation theorem of Belohorec, SIAM J. Math. Anal. 14 (1983), no. 3, 474–476. MR 697523, DOI 10.1137/0514040
- Zeev Nehari, On a class of nonlinear second-order differential equations, Trans. Amer. Math. Soc. 95 (1960), 101–123. MR 111898, DOI 10.1090/S0002-9947-1960-0111898-8
- Zeev Nehari, A nonlinear oscillation problem, J. Differential Equations 5 (1969), 452–460. MR 235203, DOI 10.1016/0022-0396(69)90085-0
- Zeev Nehari, A nonlinear oscillation theorem, Duke Math. J. 42 (1975), 183–189. MR 387723
- Hiroshi Onose, On Butler’s conjecture for oscillation of an ordinary differential equation, Quart. J. Math. Oxford Ser. (2) 34 (1983), no. 134, 235–239. MR 698209, DOI 10.1093/qmath/34.2.235
- D. Willett and J. S. W. Wong, On the discrete analogues of some generalizations of Gronwall’s inequality, Monatsh. Math. 69 (1965), 362–367. MR 185175, DOI 10.1007/BF01297622
- James S. W. Wong, On the generalized Emden-Fowler equation, SIAM Rev. 17 (1975), 339–360. MR 367368, DOI 10.1137/1017036
- James S. W. Wong, Remarks on nonoscillation theorems for a second order nonlinear differential equation, Proc. Amer. Math. Soc. 83 (1981), no. 3, 541–546. MR 627687, DOI 10.1090/S0002-9939-1981-0627687-0
Bibliographic Information
- © Copyright 1984 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 92 (1984), 367-371
- MSC: Primary 34C15
- DOI: https://doi.org/10.1090/S0002-9939-1984-0759654-3
- MathSciNet review: 759654