Regularity of Banach algebras generated by analytic semigroups satisfying some growth conditions
HTML articles powered by AMS MathViewer
- by J. Esterle and J. E. Galé
- Proc. Amer. Math. Soc. 92 (1984), 377-380
- DOI: https://doi.org/10.1090/S0002-9939-1984-0759656-7
- PDF | Request permission
Abstract:
We show that if a commutative complex Banach algebra $A$ is generated by a nonzero analytic semigroup $({a^t})\operatorname {Re} t > 0$ satisfying \[ \int {\begin {array}{*{20}{c}} { + \infty } \\ { - \infty } \\ \end {array} } \frac {{{{\log }^ + }\left \| {{a^{1 + it}}} \right \|}}{{1 + {t^2}}}dt < + \infty ,\], then $A$ is regular in Shilov’s sense.References
- A. Beurling, Sur les intégrales de Fourier absolument convergentes et leur application à une transformation fonctionnelle, Neuvième Congrès Math. Scandinaves (Helsinki, 1938), Tryekeri, Helsinki, 1939, pp. 199-210.
- Ralph Philip Boas Jr., Entire functions, Academic Press, Inc., New York, 1954. MR 0068627
- H. G. Dales and W. K. Hayman, Esterle’s proof of the Tauberian theorem for Beurling algebras, Ann. Inst. Fourier (Grenoble) 31 (1981), no. 4, vi, 141–150 (English, with French summary). MR 644346
- Jean Esterle, A complex-variable proof of the Wiener Tauberian theorem, Ann. Inst. Fourier (Grenoble) 30 (1980), no. 2, vii, 91–96 (English, with French summary). MR 584273
- A. Hulanicki, Subalgebra of $L_{1}(G)$ associated with Laplacian on a Lie group, Colloq. Math. 31 (1974), 259–287. MR 372536, DOI 10.4064/cm-31-2-259-287 —, private communication.
- Horst Leptin, Ideal theory in group algebras of locally compact groups, Invent. Math. 31 (1975/76), no. 3, 259–278. MR 399344, DOI 10.1007/BF01403147
- Allan M. Sinclair, Continuous semigroups in Banach algebras, London Mathematical Society Lecture Note Series, vol. 63, Cambridge University Press, Cambridge-New York, 1982. MR 664431
Bibliographic Information
- © Copyright 1984 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 92 (1984), 377-380
- MSC: Primary 46J05; Secondary 47D05
- DOI: https://doi.org/10.1090/S0002-9939-1984-0759656-7
- MathSciNet review: 759656