AN ELEMENTARY TRANSFORMATION OF A SPECIAL UNIMODULAR VECTOR TO ITS TOP COEFFICIENT VECTOR

RAVI A. RAO

Abstract. Let \(R \) be a commutative ring, \(v(X) \) a unimodular \(n \)-vector \((n \geq 3)\) over \(R[X] \). Suppose the leading coefficients in \(v(X) \) form a unimodular vector \(L(v) \) over \(R \). Then some element in \(E_n(\mathbb{R}[X]) \) will transform \(v(X) \) to \(L(v) \).

1. Introduction and motivation. For a commutative ring \(R \), \(E_n(R) \) will denote the subgroup of the determinant one matrices \(\text{SL}_n(R) \) generated by \(E_{ij}(\lambda) = I_n + \lambda e_{ij}, \) where \(I_n \) denotes the \(n \times n \) identity matrix, \(1 \leq i \neq j \leq n, \lambda \in R, \) and \(e_{ij} \) is the matrix whose \((i, j)\)th entry is 1 and all other entries are zeros. If \(\alpha \in E_n(R) \), call it an elementary matrix.

A vector \(v = (v_1, \ldots, v_n) \in \mathbb{R}^n \) is called unimodular if there is a vector \(w = (w_1, \ldots, w_n) \in \mathbb{R}^n \) with \(v \cdot w^t = \sum_i v_i w_i = 1. \) \(\text{Um}_n(R) \) will denote the set of all unimodular vectors in \(\mathbb{R}^n. \) Clearly, \(E_n(R) \) acts on \(\text{Um}_n(R). \) Denote by \(\equiv (\mod E_n(R)) \) vectors in the same orbit under this action.

For a polynomial \(f \in \mathbb{R}[X], \) \(L(f) \) will denote the leading coefficient of \(f. \)

A vector \(v = (v_1, \ldots, v_n) \in \text{Um}_n(\mathbb{R}[X]) \) is called a special unimodular vector if \(L(v) = (L(v_1), \ldots, L(v_n)) \in \text{Um}_n(R). \)

The principal aim of this short note is to point out

Theorem. Let \(v \in \text{Um}_n(\mathbb{R}[X]), n \geq 3, \) be a special unimodular vector. Then \(v \equiv L(v) (\mod E_n(\mathbb{R}[X])). \)

This simplifies and extends a result of A. A. Suslin in [S, Proposition 2.4].

The theorem settles affirmatively a question raised by M. P. Murthy during discussions, viz. if \(v \in \text{Um}_n(\mathbb{R}[X]), n \geq 3, \) has a monic polynomial as one of its entries, then is \(v = e_1 = (1, 0, \ldots, 0) (\mod E_n(\mathbb{R}[X]))? \)

Murthy's question was raised in relation to the following problem on the efficient generation of ideals in polynomial rings.

Problem. Let \(R \) be a noetherian ring, and \(I \) an ideal in the polynomial ring \(\mathbb{R}[X] \) containing a monic polynomial. Let \(I \) satisfy the following condition on its conormal bundle; viz the \(R/I \)-module \(I/I^2: \)

\[
\mu_{R/I}(I/I^2) = \text{the least number of generators of } I/I^2 \text{ as a } R/I\text{-module} \\
\geq \dim(\mathbb{R}[X]/I) + 2.
\]

Then is \(\mu(I) = \mu(I/I^2)? \)
Recently, S. Mandal [M] settled the above problem affirmatively. Earlier, N. Mohan Kumar's reductions in [MK] had established a surjection \(P \to I \to 0 \) with \(P \) a projective \(R[X] \)-module of rank \(\mu(I/I^2) \). By utilizing the finer information available now by our theorem, we can considerably simplify the treatment in [MK] and show that \(I \) is the onto image of a free module of rank \(\mu(I/I^2) \), thereby providing a quick alternative solution to the above problem.

Let me mention two applications of this problem.

Corollary 1. Let \(R \) be a noetherian ring, and \(I \) an ideal in \(R[X_1, \ldots, X_n] \), with height \(I > \text{dim } R \), and \(\mu(I/I^2) \geq \text{dim}(R[X_1, \ldots, X_n]/I) + 2 \). Then \(\mu(I) = \mu(I/I^2) \).

Corollary 2. Let \(X \) be an irreducible nonsingular affine variety of dimension \(d \) over a field \(k \). Let \(Y \) be a closed subset in \(X \times A^n_k \) which has pure dimension one. Assume \(n \geq 2 \). Then if the conormal sheaf of \(Y \) in \(X \times A^n_k \) is trivial, \(Y \) is a complete intersection in \(X \times A^n_k \).

Corollary 1 is immediate due to a lemma of Bass [B, Lemma 3]. Corollary 2 was established in [BR, Corollary 3.3].

2. The main theorem. \(v \equiv L(v) \pmod{E_n(R[X])} \).

The case when \(R \) is a local ring was dealt with by Suslin—see [L, Chapter III, Lemma 2.8] for instance. For the sake of completeness we include a proof.

(2.1) **Proposition (Suslin).** Let \(R \) be a local ring and \(v \in \text{Um}_n(R[X]), n \geq 3 \), have an entry which is an associate of a monic polynomial. Then \(v \equiv e_1 \pmod{E_n(R[X])} \).

Proof. Without any loss of generality, let \(v = (v_1, \ldots, v_n) \in \text{Um}_n(R[X]), \) with \(v_1 \) an associate of a monic polynomial. Then \(A = R[X]/(v_1(X)) \) is semilocal, and so \(S_{n-1}(A) = E_{n-1}(A) \). Hence, going modulo \((v_1)\) and then lifting, we may transform \(v \) to \((v_1, 1 + v_1v'_2, v_1v'_3, \ldots, v_1v'_n)\) by an elementary action, where \(v'_i \in R[X] \) for \(2 \leq i \leq n \). It is now easy to complete the proof.

To reduce to the local case, we are led by ideas of L. N. Vaserstein—see [L, Theorem 2.4]—to consider the “local-global” nature of the action of \(E_n(R[X]) \), \(n \geq 3 \), in sending a vector \(v \in \text{Um}_n(R[X]) \) to its projection \(v(0) \). For this we shall use the following slight variant of a lemma of Suslin [S, Lemma 3.4], which can be proved in an identical fashion.

(2.2) **Lemma (Suslin).** Suppose \(\alpha \in E_n(R_m[X]), \) \(\alpha(0) = I_n \), for some \(s \in R \). Then there exists a natural number \(k \) such that for any \(r_1, r_2 \in R[X] \) with \(r_1 - r_2 \in s^kR[X], \) \(\alpha(r_1X) = \alpha(r_2X) \in E_n(R[X]) \).

(2.3) **Local-Global Theorem.** Let \(v \in \text{Um}_n(R[X]), n \geq 3 \). Suppose that for all \(m \in \text{Max } R, v \equiv v(0) \pmod{E_n(R_m[X])} \). Then \(v \equiv v(0) \pmod{E_n(R[X])} \).

Proof. Let \(J = \{ s \in R \mid v \equiv v(0) \pmod{E_n(R_m[X]))} \} \) denote the ‘Quillen ideal’ of \(v \). In view of the assumption, it suffices to show that this set is actually an ideal.
Clearly, one only needs to check that \(s_1, s_2 \in J \Rightarrow s_1 + s_2 \in J \). Inverting \(s_1 + s_2 \), we may assume \(s_1 + s_2 = 1 \).

Let \(\sigma_i \in E_n(R_{s_i}(X)), i = 1, 2 \), with \(\sigma_1 v = v(0) \). We may assume \(\sigma_i(0) = I_n, i = 1, 2 \). Let \(\alpha = \sigma_2 \sigma_1^{-1} \in E_n(R_{s_1 s_2}(X)) \). By (2.2) there exists \(k > 0 \) such that \(\alpha(aX) \in E_n(R_{s_1}(X)) \) if \(S_1^k a \), and \(\alpha(aX)^{-1} \alpha(X) \in E_n(R_{s_1}(X)) \) if \(S_2^{-k}(1 - a) \). Since \((s_1, s_2) = 1 \), given any integer \(k \), such an \(a \) is readily available.

Observe that, since \(v(0) \) is a constant vector and \(X \to aX \) is \(R \)-linear, \(\alpha(X) \alpha(aX)^{-1} \) preserves \(v(0) \! \). But then

\[
\sigma_2 \sigma_1^{-1} = \alpha(X) = \alpha(aX) \left(\alpha(aX)^{-1} \alpha(X) \right) = \beta_2 \beta_1
\]

with \(\beta_i \in E_n(R_{s_i}(X)), i = 1, 2 \), and \(\beta_1 v(0) = v(0) \). Replacing \(\sigma_1 \) by \(\beta_1^{-1} \sigma_1 \), \(\sigma_1 \) by \(\beta_1 \sigma_1 \), we obtain a \(\gamma \in \text{SL}_n(R[X]) \) with \(\gamma v = v(0) \), and \(\gamma_{s_i} = \sigma_i, i = 1, 2 \). Since \(\gamma \) is \"locally\" elementary, by [S, Theorem 3.1], \(\gamma \in E_n(R[X]) \). Thus, \(J \) is an ideal.

A Horrock’s-like argument now completes the proof of the main theorem.

(2.4) Theorem. Let \(v \in \text{Um}_n(R[X]), n \geq 3 \), be a special unimodular vector. Then \(v \equiv L(v) \pmod{E_n(R[X])} \).

Proof. Regard \(v = (v_1, \ldots, v_n) \in \text{Um}_n(R[X - 1]) \)! By (2.1), \(v_m \equiv v(1) \pmod{E_n(R_m[X - 1])} \) for all \(m \in \text{Max}(R) \) since \(v \) is special. Therefore, by the Local-Global Theorem (2.3), \(v \equiv v(1) \pmod{E_n(R[X - 1])} \). It thus suffices to show that \(v(1) \equiv L(v) \pmod{E_n(R)} \).

Let \(m_i = \deg v_i \), and put \(w_i = X^{-m_i} v_i \in R[X^{-1}] \), for \(1 \leq i \leq n \). Then \(w = (w_1, \ldots, w_n) \in \text{Um}_n(R[X^{-1}]) \), as \(w \) is unimodular after inverting \(X^{-1} \), and \(w(0) = L(v) \equiv \text{Um}_n(R) \). Applying (2.1) and (2.3) as above we get

\[
w \equiv w(0) = L(v) \pmod{E_n(R[X^{-1}])}.
\]

Putting \(X^{-1} = 1 \), we get

\[
w(1) = v(1) \equiv L(v) \pmod{E_n(R)}!
\]

(2.5) Corollary. Let \(v \in \text{Um}_n(R[X]), n \geq 3 \), with some entry of \(v \) an associate of a monic polynomial. Then \(v \) can be completed to an elementary matrix \(\alpha \in E_n(R[X]) \).

(2.6) Remark. We indicate another interesting proof of (2.4) which arose out of trying to understand why the proof of the theorem in [M] works.

Think of \(v \in \text{Um}_n(R[X, T, T^{-1}]) \). Consider the \(R \)-linear automorphism \(\varphi \) of \(R[X, T, T^{-1}] \) which fixes \(T \) and sends \(X \) to \(X - T + T^{-1} \). Clearly, it suffices to show \(\varphi(v) \equiv L(v) \pmod{E_n(R[X, T, T^{-1}])} \). The effect of \(\varphi \) on a polynomial \(f \in R[X] \) is to change it to a Laurent polynomial in \(T \) whose leading and lowest coefficient = \(L(f) \) up to a sign. If \(\varphi(v) = (\varphi(v_1), \ldots, \varphi(v_n)) \) and \(m_i \) are least integers so chosen that \(T^{-m_i} \varphi(v_i) = w_i \in R[X, T] \), then \(w = (w_1, \ldots, w_n) \in \text{Um}_n(R[X, T]) \). Applying (2.1) and (2.3),

\[
w \equiv w(0) \pmod{E_n(R[X, T])} \quad \text{and} \quad w(0) \equiv L(v) \pmod{E_n(R)}.
\]

But then \(\varphi(v) = L(v) \pmod{E_n(R[X, T])} \). Hence \(v = L(v) \pmod{E_n(R[X])} \).
REFERENCES

SCHOOL OF MATHEMATICS, TATA INSTITUTE OF FUNDAMENTAL RESEARCH, COLOBA, BOMBAY 400 005, INDIA

Current address: Department of Mathematics, The University of Chicago, 5734 South University Avenue, Chicago, Illinois 60637