A note on strong extreme and strongly exposed points in Bochner $L^ p$-spaces
HTML articles powered by AMS MathViewer
- by Peter Greim
- Proc. Amer. Math. Soc. 93 (1985), 65-66
- DOI: https://doi.org/10.1090/S0002-9939-1985-0766528-1
- PDF | Request permission
Abstract:
A strongly exposed (strongly extreme) vector-valued ${L^p}$-function takes only strongly exposed (strongly extreme) values almost everywhere on its support. We remove the restrictions, concerning the range space and the measure, in previous papers of the author and M. A. Smith.References
- Peter Greim, An extremal vector-valued $L^{p}$-function taking no extremal vectors as values, Proc. Amer. Math. Soc. 84 (1982), no.Β 1, 65β68. MR 633279, DOI 10.1090/S0002-9939-1982-0633279-0
- Peter Greim, Strongly exposed points in Bochner $L^{p}$-spaces, Proc. Amer. Math. Soc. 88 (1983), no.Β 1, 81β84. MR 691281, DOI 10.1090/S0002-9939-1983-0691281-8
- A. Ionescu Tulcea and C. Ionescu Tulcea, Topics in the theory of lifting, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 48, Springer-Verlag New York, Inc., New York, 1969. MR 0276438, DOI 10.1007/978-3-642-88507-5
- Dennis Sentilles, Decomposition of weakly measurable functions, Indiana Univ. Math. J. 32 (1983), no.Β 3, 425β437. MR 697647, DOI 10.1512/iumj.1983.32.32031
- Mark A. Smith, Strongly extreme points in $L^p(\mu , X)$, Rocky Mountain J. Math. 16 (1986), no.Β 1, 1β5. MR 829190, DOI 10.1216/RMJ-1986-16-1-1 P. Greim, An extension of J. A. Johnsonβs characterization of extremal vector-valued ${L^p}$-functions (submitted).
Bibliographic Information
- © Copyright 1985 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 93 (1985), 65-66
- MSC: Primary 46E40; Secondary 46B20
- DOI: https://doi.org/10.1090/S0002-9939-1985-0766528-1
- MathSciNet review: 766528