Completely bounded maps on $C^ \ast$-algebras
HTML articles powered by AMS MathViewer
- by Ching Yun Suen
- Proc. Amer. Math. Soc. 93 (1985), 81-87
- DOI: https://doi.org/10.1090/S0002-9939-1985-0766532-3
- PDF | Request permission
Abstract:
In this paper we give a simpler proof of an extension theorem for completely bounded maps defined on subspaces of ${C^ * }$-algebras, a new proof of a theorem of Wittstock [8, Satz 4.5], and a series of propositions by extending the techniques of [7] to work in the case of a $C$-bimodule action on the ${C^ * }$-algebras involved.References
- William B. Arveson, Subalgebras of $C^{\ast }$-algebras, Acta Math. 123 (1969), 141–224. MR 253059, DOI 10.1007/BF02392388
- Man Duen Choi and Edward G. Effros, Injectivity and operator spaces, J. Functional Analysis 24 (1977), no. 2, 156–209. MR 0430809, DOI 10.1016/0022-1236(77)90052-0
- D. W. Hadwin, Dilations and Hahn decompositions for linear maps, Canadian J. Math. 33 (1981), no. 4, 826–839. MR 634141, DOI 10.4153/CJM-1981-064-7
- P. R. Halmos, Ten problems in Hilbert space, Bull. Amer. Math. Soc. 76 (1970), 887–933. MR 270173, DOI 10.1090/S0002-9904-1970-12502-2
- Richard V. Kadison, On the orthogonalization of operator representations, Amer. J. Math. 77 (1955), 600–620. MR 72442, DOI 10.2307/2372645
- Vern I. Paulsen, Completely bounded maps on $C^{\ast }$-algebras and invariant operator ranges, Proc. Amer. Math. Soc. 86 (1982), no. 1, 91–96. MR 663874, DOI 10.1090/S0002-9939-1982-0663874-4
- Vern I. Paulsen, Every completely polynomially bounded operator is similar to a contraction, J. Funct. Anal. 55 (1984), no. 1, 1–17. MR 733029, DOI 10.1016/0022-1236(84)90014-4
- Gerd Wittstock, Ein operatorwertiger Hahn-Banach Satz, J. Functional Analysis 40 (1981), no. 2, 127–150 (German, with English summary). MR 609438, DOI 10.1016/0022-1236(81)90064-1 —, Extension of completely bounded ${C^ * }$-module homomorphisms, preprint.
Bibliographic Information
- © Copyright 1985 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 93 (1985), 81-87
- MSC: Primary 46L05
- DOI: https://doi.org/10.1090/S0002-9939-1985-0766532-3
- MathSciNet review: 766532