CONTRACTIONS WITH THE BICOMMUTANT PROPERTY

KATSUTOSHI TAKAHASHI

ABSTRACT. It is shown that if T is a contraction for which there is an operator W with dense range such that $WT = SW$ for some unilateral shift S, then T has the bicommutant property, that is, the double commutant of T is the weakly closed algebra generated by T and the identity. As an example of such a contraction we have a contraction T such that $I - T^*T$ is of trace class and the spectrum of T fills the unit disc.

1. A bounded linear operator T on a Hilbert space is said to have the bicommutant property if $\{T\}'' = \text{Alg } T$, where $\{T\}''$ and $\text{Alg } T$ denote the double commutant of T and the weakly closed algebra generated by T and the identity, respectively. Every nonunitary isometry has the bicommutant property [6]. This result was extended by Uchiyama [7 and 8] and Wu [12] to some classes of contractions T whose defect operators $D_T = (I - T^*T)^{1/2}$ are of finite rank. In [7 and 8], Uchiyama proved the bicommutant property for C_0-contractions not of class C_00 whose defect operators are of finite rank. Subsequently Wu [12] proved this property for C_x-contractions not of class C_xx whose defect operators are of finite rank. In this note the above results are extended to contractions whose defect operators are of Hilbert-Schmidt class; indeed, we obtain a more general result.

A contraction is completely nonunitary (c.n.u.) if it has no nontrivial unitary direct summand. Given a c.n.u. contraction T, the H^∞-functional calculus of Sz.-Nagy and Foias defines the operator $\phi(T)$ in $\text{Alg } T$ for every ϕ in H^∞ (cf. [2, Chapter III]). In this note all Hilbert spaces are assumed to be separable.

Our main result is the following theorem, which we prove in §3.

THEOREM 1. If T is a c.n.u. contraction and there exists an operator W with dense range such that $WT = SW$ for some unilateral shift S, then $\{T\}'' = \{\phi(T) : \phi \in H^\infty\}$, and in particular T has the bicommutant property.

A contraction T is called a weak contraction if its defect operator D_T is of Hilbert-Schmidt class and its spectrum $\sigma(T)$ does not fill the open unit disc D. A C_1-contraction with Hilbert-Schmidt defect operator is a weak contraction if and only if it is of class C_{11}, and a C_0-contraction with Hilbert-Schmidt defect operator is a weak contraction if and only if it is of class C_00 (cf. [2, Chapter VIII and 5]).

Received by the editors February 29, 1984.

1980 Mathematics Subject Classification. Primary 47A45; Secondary 47C05.

Key words and phrases. Contraction, the bicommutant property, double commutant, unilateral shift, Hilbert-Schmidt defect operator.

©1985 American Mathematical Society
0002-9939/85 $1.00 + $.25 per page

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Theorem 2. Let T be a c.n.u. contraction whose defect operator is of Hilbert-Schmidt class. If T is not a weak contraction, then

\[\{T\}' = \{\phi(T) : \phi \in H^\infty\}. \]

This result was proved in a previous paper [4] for C_1-contractions. The proof of [4, Theorem 2] is useful to our proof of Theorem 1.

2. The following lemma shows that Theorem 2 is an immediate consequence of Theorem 1.

Lemma 3. If T is a contraction on a Hilbert space \mathcal{H} whose defect operator is of Hilbert-Schmidt class, and which is not a weak contraction, then there exists an operator W with dense range such that $WT = SW$ or $WT^* = SW$ for some unilateral shift S.

For C_0-contractions and C_1-contractions, Lemma 3 was proved in [9] (cf. [5, Theorem 2]) and [4] respectively, that is, for such a contraction T there exists an operator W with dense range such that $W = SW$ for a unilateral shift S satisfying $\text{ind } S = \text{ind } T$ (for a semi-Fredholm operator A, $\text{ind } A$ denotes Fredholm index). Note that if T is a C_0-contraction or a C_1-contraction whose defect operator is of Hilbert-Schmidt class, then it is a weak contraction if and only if $\text{ind } T = 0$ (see [5] for a C_0-contraction).

Proof of Lemma 3. Let

\[T = \begin{bmatrix} T_1 & T_{12} \\ 0 & T_2 \end{bmatrix} \]

be the triangulation of T on the decomposition $\mathcal{H} = \mathcal{H}_1 \oplus \mathcal{H}_2$ such that T_1 is of class C_1 and T_2 of class C_0 (see [2, Theorem II.4.1]). Since D_T is of Hilbert-Schmidt class, D_{T_1} is of Hilbert-Schmidt class too, and it follows from the identity $D_{T_1} T_1^* = T_1^* D_{T_1}$ and the injectivity of the C_1-contraction T_1^* that the selfadjoint operators $D T_1^*$ and $D_{T_1}|\text{ran } T_1^*$ are unitarily equivalent, so that $D T_1^*$ is of Hilbert-Schmidt class. If $\text{ind } T_1 \neq 0$, then, as remarked above, there exists an operator W_1 with dense range such that $W_1 T_1^* = SW_1$ for some unilateral shift S. Then the operator W defined by $W = W_1$ on \mathcal{H}_1 and $W = 0$ on \mathcal{H}_2 satisfies $WT^* = SW$ and has dense range. Therefore let us assume that $\text{ind } T_1 = 0$. This assumption implies that $\sigma(T_1)$ is included in the unit circle. Then, since $\sigma(T) \subseteq \sigma(T_1) \cup \sigma(T_2)$ and T is not a weak contraction, $\sigma(T_2)$ fills D. Also the fact that D_T and D_{T_1} are of Hilbert-Schmidt class implies that T_{12} is of trace class and D_{T_2} is of Hilbert-Schmidt class. Therefore, by the result remarked above, we obtain an operator W_2 with dense range such that $W_2 T_2 = SW_2$ for some unilateral shift S, and the operator $W = [0, W_2]$ which has dense range satisfies $WT = SW$. This completes the proof.

3. In this section we prove Theorem 1. For a c.n.u. contraction we use the functional model of Sz.-Nagy and Foias [2].

For a Hilbert space \mathcal{E}, let $L^2(\mathcal{E})$ and $H^2(\mathcal{E})$ denote the spaces of \mathcal{E}-valued, L^2- and H^2-functions on the unit circle, respectively. For two Hilbert spaces \mathcal{E} and \mathcal{E}', let $L^\infty(\mathcal{E}, \mathcal{E}')$ and $H^\infty(\mathcal{E}, \mathcal{E}')$ denote the spaces of operator-valued, L^∞- and H^∞-functions on the unit circle whose values are operators from \mathcal{E} to \mathcal{E}', respectively.
For an operator-function F in $L^\infty(\mathcal{E}, \mathcal{E}')$, we use its multiplication operator from $L^2(\mathcal{E})$ to $L^2(\mathcal{E}')$ which is denoted by the same letter F:

$$(Ff)(e^{it}) = F(e^{it})f(e^{it}) \quad (f \in L^2(\mathcal{E})).$$

Let T be a c.n.u. contraction, and let D_T denote the closure of the range of the defect operator D_T. For the characteristic function Θ_T of T, which is a contractive operator-function in $H^\infty(D_T, D_T')$, set

$$\Delta_T(e^{it}) = (I - \Theta_T(e^{it})^*\Theta_T(e^{it}))^{1/2}.$$

Then the (unitarily equivalent) functional model of T is the operator $S(\Theta_T)$ on the Hilbert space

$$H(\Theta_T) = [H^2(D_T) \oplus \Delta_T L^2(D_T)] \oplus \{\Theta_T h + \Delta_T h : h \in H^2(D_T)\},$$

defined by

$$S(\Theta_T)(f \oplus g) = P(\chi f \oplus \chi g),$$

where $\chi(e^{it}) = e^{it}$ and P denotes the orthogonal projection of $H^2(D_T) \oplus \Delta_T L^2(D_T)$ onto $H(\Theta_T)$ (cf. [2, Chapter VI]).

Lemma 4. If T is a c.n.u. contraction and there is an operator W with dense range such that $WT = SW$ for some unilateral shift S, then there is an operator-function Φ in $H^\infty(D_T, \mathcal{E})$, where \mathcal{E} is a Hilbert space, that is $*$-inner and outer such that

$$H^\infty(\mathcal{E}, \mathcal{F})\Phi = \{A \in H^\infty(D_T, \mathcal{F}) : A\Theta_T = 0\}$$

for any Hilbert space \mathcal{F}.

Proof. Let S be the unilateral shift on $H^2(\mathcal{G})$ where \mathcal{G} is a Hilbert space. By the lifting theorem of Sz.-Nagy and Foias (see [2, Theorem II.2.3 or 3]) there is an operator-function $\Psi \in H^\infty(D_T, \mathcal{G})$ such that $\Psi\Theta_T = 0$ and $W = [\Psi, 0]|H(\Theta_T)$, which implies that the shift-invariant subspace $M = \{f \in H^2(D_T) : \Theta_T f = 0\}$ (where, for an operator-function A in $H^\infty(\mathcal{F}, \mathcal{F}')$, \tilde{A} is an operator-function in $H^\infty(\mathcal{F}', \mathcal{F})$ defined by $\tilde{A}(\lambda) = A(\lambda)^*$) contains the nonzero subspace $\tilde{\Psi}H^2(\mathcal{G})$, hence $M = \tilde{\Phi}H^2(\mathcal{E})$, where \mathcal{E} is a nonzero Hilbert space and Φ is a $*$-inner function in $H^\infty(D_T, \mathcal{E})$, that is, Φ is inner (cf. [2, Theorem V.3.3]). Let us show that the operator-function Φ satisfies the required conditions. Since $\Phi\Theta_T = 0$, the inclusion $H^\infty(\mathcal{E}, \mathcal{F})\Phi \subseteq \{A \in H^\infty(D_T, \mathcal{F}) : A\Theta_T = 0\}$ for any Hilbert space \mathcal{F} is clear. Conversely, take $A \in H^\infty(D_T, \mathcal{F})$ such that $A\Theta_T = 0$ or equivalently $\tilde{\Theta}_T\tilde{A} = 0$. Then, since $\tilde{A}H^2(\mathcal{F}) \subseteq M = \tilde{\Phi}H^2(\mathcal{E})$ and Φ is inner, it follows that $\tilde{\Phi}^*\tilde{A} \in H^\infty(\mathcal{E}, \mathcal{F})$ and $\tilde{A} = \tilde{\Phi}(\tilde{\Phi}^*\tilde{A})$, hence $A \in H^\infty(\mathcal{E}, \mathcal{F})\Phi$. Next we see that Φ is outer, equivalently $\tilde{\Phi}^*\tilde{L}(H^2(\mathcal{D}))(\tilde{\Phi}^*\tilde{H}^2(\mathcal{D}))$ is dense in $L^2(\mathcal{E})\oplus H^2(\mathcal{E})$. Indeed, if g is orthogonal to $\tilde{\Phi}^*\tilde{L}(H^2(\mathcal{D}))(\tilde{\Phi}^*\tilde{H}^2(\mathcal{D}))$, then $\tilde{\Phi}g$ is orthogonal to $L^2(\mathcal{D})(\tilde{\Phi}^*\tilde{H}^2(\mathcal{D}))$, that is, $\tilde{\Phi}g$ is in $H^2(\mathcal{D})$. Therefore it follows from $\tilde{\Theta}_T\tilde{\Phi} = 0$ that $\tilde{\Phi}g \in M = \tilde{\Phi}H^2(\mathcal{E})$, so that $g \in H^2(\mathcal{E})$ because Φ is inner.

Let \mathcal{L} denote the algebra of all operators \tilde{X} on $H^2(D_T) \oplus \Delta_T L^2(D_T)$ that have the form

$$\tilde{X} = \begin{bmatrix} A & 0 \\ B & C \end{bmatrix},$$
where $A \in H^\infty(\mathcal{D}_{T}, \mathcal{D}_{T})$, $B \in L^\infty(\mathcal{D}_{T'}, \mathcal{D}_{T})$ and $C \in L^\infty(\mathcal{D}_{T}, \mathcal{D}_{T})$ such that $BH^2(\mathcal{D}_{T'}) \subseteq \Delta_T L^2(\mathcal{D}_{T})$ and $C\Delta_T L^2(\mathcal{D}_{T}) \subseteq \Delta_T L^2(\mathcal{D}_{T})$, and they satisfy the equality
\[
\begin{bmatrix}
A & 0 \\
B & C
\end{bmatrix}
\begin{bmatrix}
\Theta_T \\
\Delta_T
\end{bmatrix}
=
\begin{bmatrix}
\Theta_T \\
\Delta_T
\end{bmatrix}
K
\]
for some $K \in H^\infty(\mathcal{D}_{T}, \mathcal{D}_{T})$. By the lifting theorem of Sz.-Nagy and Foias (see [2, Theorem II.2.3 or 3]) the correspondence $\pi: \hat{X} \mapsto P\hat{X}|H(\Theta_T)$ maps \mathcal{L} onto the commutant $\{S(\Theta_T)\}'$ and obviously it is linear and multiplicative.

Proof of Theorem 1. The inclusion $\{\phi(T): \phi \in H^\infty\} \subseteq \{T\}''$ is obvious. To see the converse inclusion, take $X = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \in \mathcal{L}$ for which $\pi(X) \in \{S(\Theta_T)\}''$, and let us prove that there is $\phi \in H^\infty$ such that $\pi(X) = \phi(S(\Theta_T))$. Since $A\Theta_T = \Theta_T K$ for some $K \in H^\infty(\mathcal{D}_{T}, \mathcal{D}_{T})$, it follows from Lemma 4 that there is an operator-function $A_1 \in H^\infty(\mathcal{E}, \mathcal{E})$ such that $\Phi A = A_1 \Phi$, where Φ is the operator-function in Lemma 4. Take any $F \in H^\infty(\mathcal{E}, \mathcal{D}_{T'})$ and $G \in L^\infty(\mathcal{E}, \mathcal{D}_{T})$. Since $\Phi \Theta_T = 0$, the operator
\[
\hat{Y} = \begin{bmatrix}
F \Phi & 0 \\
\Delta_T G \Phi & 0
\end{bmatrix}
\]
belongs to \mathcal{L}. Therefore the assumption $\pi(X) \in \{S(\Theta_T)\}''$ implies that
\[
\pi(X\hat{X} - \hat{X} X) = \pi(X)\pi(\hat{X}) - \pi(\hat{X})\pi(X) = 0,
\]
and so the operator
\[
X\hat{X} - \hat{X} X = \begin{bmatrix}
AF - F\Phi A & 0 \\
BF + C\Delta_T G \Phi - \Delta_T G \Phi A & 0
\end{bmatrix}
\]
maps $H^2(\mathcal{D}_{T'}) \oplus \{0\}$ into $\{\Theta_T f \oplus \Delta_T f: f \in H^2(\mathcal{D}_{T})\}$. Then, since $\Phi A = A_1 \Phi$ and Φ is outer, we have
\[
\begin{bmatrix}
AF - FA_1 \\
BF + C\Delta_T G - \Delta_T GA_1
\end{bmatrix}
H^2(\mathcal{E}) \subseteq \begin{bmatrix}
\Theta_T \\
\Delta_T
\end{bmatrix}
H^2(\mathcal{D}_{T'}),
\]
so that $A_1 \Phi F - \Phi FA_1 = \Phi(AF - FA_1) = 0$ and $A_1 \Phi(\chi^n F) = \Phi(\chi^n F) A_1$ for $n = 1, 2, \ldots$, where $\chi(e^{it}) = e^{it}$. Since the set $\{\chi^n F: F \in H^\infty(\mathcal{E}, \mathcal{D}_{T'})\}$ and $n = 1, 2, \ldots$ is operator-weakly dense in $L^\infty(\mathcal{E}, \mathcal{D}_{T'})$ and $\Phi L^\infty(\mathcal{E}, \mathcal{D}_{T'}) = L^\infty(\mathcal{E}, \mathcal{E})$ because Φ is $*$-inner, it follows that $A_1 \in H^\infty(\mathcal{E}, \mathcal{E})$ commutes with all of $L^\infty(\mathcal{E}, \mathcal{E})$, which implies $A_1 = \phi I_{\mathcal{E}}$ for some $\phi \in H^\infty$. Now, set $\hat{Z} = \begin{bmatrix} \phi I & 0 \\ 0 & \phi I \end{bmatrix}$. Obviously, $\hat{Z} \in \mathcal{L}$ and $\pi(\hat{Z}) = \phi(S(\Theta_T))$. Furthermore, for every $F \in H^\infty(\mathcal{E}, \mathcal{D}_{T'})$ and $G \in L^\infty(\mathcal{E}, \mathcal{D}_{T})$
\[
(\hat{X} - \hat{Z}) \begin{bmatrix}
F \\
\Delta_T G
\end{bmatrix}
=
\begin{bmatrix}
(A - \phi I)F \\
BF + (C - \phi I)\Delta_T G
\end{bmatrix}
=
\begin{bmatrix}
AF - FA_1 \\
BF + C\Delta_T G - \Delta_T GA_1
\end{bmatrix},
\]
since
\[
(\hat{X} - \hat{Z}) \begin{bmatrix}
F \\
\Delta_T G
\end{bmatrix}
H^2(\mathcal{E}) \subseteq \begin{bmatrix}
\Theta_T \\
\Delta_T
\end{bmatrix}
H^2(\mathcal{D}_{T'}).
Then, since obviously $H^2(D_{T^*}) \oplus \Delta_T L^2(D_T)$ is the closed linear span of
\[\{ Fh \oplus \Delta_T Gh : F \in H^\infty(\mathcal{E}, D_{T^*}), \ G \in L^\infty(\mathcal{E}, D_T) \text{ and } h \in H^2(\mathcal{E}) \} , \]
it follows that
\[(\hat{X} - \hat{Z})(H^2(D_{T^*}) \oplus \Delta_T L^2(D_T)) \subseteq \{ \Theta_T f \oplus \Delta_T f : f \in H^2(D_T) \} , \]
hence $\pi(\hat{X} - \hat{Z}) = 0$, which proves $\pi(\hat{X}) = \phi(S(\Theta_T))$.

4. Finally we consider a contraction T with a unitary part. Let $T = T_1 \oplus U_a \oplus U_s$, where T_1 is a c.n.u. contraction, U_a is an absolutely continuous unitary operator and U_s is a singular unitary operator. Then $\text{Alg} T = \text{Alg}(T_1 \oplus U_a) \oplus \text{Alg} U_s$ (cf. [11]) and this implies $\{ T \}'' = \{ T_1 \oplus U_a \}'' \oplus \{ U_s \}''$. Also the singular unitary operator U_s is reductive [10], that is, every U_s-invariant subspace is U_s-reducing, hence it follows from the reflexivity of U_s and the double commutant theorem for von Neumann algebras that $\text{Alg} U_s = \{ U_s \}''$ (cf. [6]). Thus $\text{Alg} T = \{ T \}''$ if and only if $\text{Alg}(T_1 \oplus U_a) = \{ T_1 \oplus U_a \}''$. Now we have the following theorem.

THEOREM 5. If T is a contraction and there is an operator W with dense range such that $WT = SW$ for some unilateral shift S, then T has the bicommutant property.

In fact, since the absolutely continuous unitary operator U_a is similar to a c.n.u. contraction T_2 (cf. [1]), $T_1 \oplus U_a$ is similar to $T_1 \oplus T_2$. Also, since obviously $W = 0$ on the space on which the unitary operator $U_a \oplus U_s$ acts, there is an operator W_1 with dense range such that $W_1 T_1 = SW_1$, hence the c.n.u. contraction $T_1 \oplus T_2$ similar to $T_1 \oplus U_a$ satisfies the assumption in Theorem 1. Thus $T_1 \oplus T_2$ and $T_1 \oplus U_a$ have the bicommutant property, and as remarked above, T has the bicommutant property too.

REFERENCES

5. K. Takahashi and M. Uchiyama, Every C_{00}-contraction with Hilbert Schmidt defect operator is of class C_0, J. Operator Theory 10 (1983), 331–335.

DEPARTMENT OF MATHEMATICS, SAPPORO MEDICAL COLLEGE, MINAMI-1 NISHI-17, SAPPORO, JAPAN

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use