Contractions with the bicommutant property
HTML articles powered by AMS MathViewer
- by Katsutoshi Takahashi
- Proc. Amer. Math. Soc. 93 (1985), 91-95
- DOI: https://doi.org/10.1090/S0002-9939-1985-0766534-7
- PDF | Request permission
Abstract:
It is shown that if $T$ is a contraction for which there is an operator $W$ with dense range such that $WT = SW$ for some unilateral shift $S$, then $T$ has the bicommutant property, that is, the double commutant of $T$ is the weakly closed algebra generated by $T$ and the identity. As an example of such a contraction we have a contraction $T$ such that $I - {T^ * }T$ is of trace class and the spectrum of $T$ fills the unit disc.References
- L. Kérchy, On invariant subspace lattices of $C_{11}$-contractions, Acta Sci. Math. (Szeged) 43 (1981), no. 3-4, 281–293. MR 640305
- Béla Sz.-Nagy and Ciprian Foiaş, Harmonic analysis of operators on Hilbert space, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York; Akadémiai Kiadó, Budapest, 1970. Translated from the French and revised. MR 0275190
- Béla Sz.-Nagy and Ciprian Foiaş, On the structure of intertwining operators, Acta Sci. Math. (Szeged) 35 (1973), 225–254. MR 399896
- Katsutoshi Takahashi, $C_{1\bfcdot }$-contractions with Hilbert-Schmidt defect operators, J. Operator Theory 12 (1984), no. 2, 331–347. MR 757438
- Katsutoshi Takahashi and Mitsuru Uchiyama, Every $C_{00}$ contraction with Hilbert-Schmidt defect operator is of class $C_{0}$, J. Operator Theory 10 (1983), no. 2, 331–335. MR 728912
- T. Rolf Turner, Double commutants of isometries, Tohoku Math. J. (2) 24 (1972), 547–549. MR 322560, DOI 10.2748/tmj/1178241445
- Mitsuru Uchiyama, Double commutants of $C_{\cdot 0}$ contractions, Proc. Amer. Math. Soc. 69 (1978), no. 2, 283–288. MR 482301, DOI 10.1090/S0002-9939-1978-0482301-2
- Mitsuru Uchiyama, Double commutants of $C_{\cdot 0}$ contractions. II, Proc. Amer. Math. Soc. 74 (1979), no. 2, 271–277. MR 524299, DOI 10.1090/S0002-9939-1979-0524299-5
- Mitsuru Uchiyama, Contractions and unilateral shifts, Acta Sci. Math. (Szeged) 46 (1983), no. 1-4, 345–356. MR 739054
- John Wermer, On invariant subspaces of normal operators, Proc. Amer. Math. Soc. 3 (1952), 270–277. MR 48700, DOI 10.1090/S0002-9939-1952-0048700-X
- Pei Yuan Wu, $C_{11}$ contractions are reflexive. II, Proc. Amer. Math. Soc. 82 (1981), no. 2, 226–230. MR 609656, DOI 10.1090/S0002-9939-1981-0609656-X
- Pei Yuan Wu, Approximate decompositions of certain contractions, Acta Sci. Math. (Szeged) 44 (1982), no. 1-2, 137–149. MR 660520
Bibliographic Information
- © Copyright 1985 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 93 (1985), 91-95
- MSC: Primary 47A45; Secondary 47A65, 47C05
- DOI: https://doi.org/10.1090/S0002-9939-1985-0766534-7
- MathSciNet review: 766534